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PREFACE

This report describes work on new design methods for filters used
in discrete data control systems. Design methods are developed first
for sampling rates to minimize the bit requirements for each filter
coefficient then new design methods for digital filters that minimize
the need for digital multiplication are described. Interactive soft-
ware for aiding design and implementation of digital filters was

written and is described in the report.
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INTRODUCTION

This report describes work on new design and implementation
methods for filters used in discrete-data control systems.
Specifically, the following tasks were undertaken:

1. The development of design methods that use

the sampling interval as a design parameter
to minimize the bits required to represent
each filter coefficient.

2. The development of new design methods for

digital control algorithms to minimize the
need for digital multiplication.

3. The development of interactive software to

aid in the design and implementation of
digital control algorithms.

4. A method of fault analysis for digital
control algorithms.

Each task is discussed with details given via copies of each

report generated during the contract period. These reports
are provided as appendices.
¥ 1. DESIGN USING THE SAMPLING RATE AS A DESIGN PARAMETER

Both digital and analog filter synthesis generally involve
tradeoffs. For instance, low ordered filters may have either
sharp rolloff or flat passbands but not both. High order filters
can have excellent frequency response characteristics but involve
a large number of components or multiplications, both of which
increase errors. In sampling time synthesis there are tradeoffs
as well. Exact coefficients can be easily found for quite a
few first order filters but the sampling time which yields such
coefficients causes the filters to have serious magnitude errors
due to aliasing. On the other hand, a sampling time which is i

very short will cause the filter frequency response to be very




|
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sensitive to coefficient quantization. The tradeoff between

aliasing errors and coefficient quantization errors is to be
kept in mind in synthesizing sampling times for bilinear z-
transform filters. In fact, the tradeoff considerations are

an important step in the synthesis procedure.

First Order Filters

The technique for synthesizing sampling time is essentially
the same for both first and second order filters. However,
because there are only two coefficients in the first order
filters and because frequency independent bounds can be found
for the first order filters, the first order case is developed
first.

For the design a realistic approach is to make the magnitude
(or phase) response errors as samll as possible while retaining
a short enough sampling interval to avoid aliasing errors. One
means of finding coefficients which will give small error is to
generate a number of sets of coefficients and then find the
truncated and bounded values for each. Next, take the differ-
ence between the designed coefficients and the respective quan-
tized values and determine the maximum error for each set of
coefficients. The set with the smallest maximum magnitude error
is then the set of coefficients to use unless the sampling
interval associated with that set is too long to meet the aliasing
specifications. A maximum bound on frequency error could be
given and the sampling times and coefficients which give a mag-
nitude error less than the bound would be considered. If the

frequency response error criterion is not met, then it is
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necessary to generate more coefficients using different sampling
times than used previously and repeat the procedure above. If
the magnitude response error criterion is not satisfied after
several hundred sampling times have been tried it would be
necessary to use a longer word length to realize the coefficients.

While the procedure above seems quitc .ong, it is possible
to combine all of the steps of the process into an interactive
computer program. The block diagram of such a program is shown
in Figure 1l.1.

The first block of Figure 1.1 asks for input of the analog
filter coefficients, the word length desired, the maximum absolute
value for the magnitude response error, AIHI, and the maximum
number of iterations to be done before it is decided that a
longer word length is necessary. Block 2 initializes the sampling
time for a certain pass. On the first pass the sampling time
will be set to .Ol'tmax as an initial value where tmax is the
maximum value the sampling interval can be, set to avoid aliasing
errors. Blocks 3 and 4 are self-explanatory, where block 3 uses
equations for a digital filter found from an analog filter via
the bilinear z~transform to generate the digital coefficients.

The fifth and sixth blocks are similar to each other. In each,
the difference is found between the designed (infinite precision)
digital coefficients and the quantized coefficients. The differ-
ences are found for the rounded coefficients and then A|H| is
derived by using the magnitude of the desired and actual filters.
The same calculations are also done for the truncated coefficients
Then A|H| of the rounded values is compared to the A|H| of the

truncated values and the smallest of those two A|H|'s is chosen

B ——— ——
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for that sampling interval. If the AIHI chosen is less than the
maximum allowable magnitude error, specified in the first block,
then the sampling time and the associated digital coefficients
are printed out along with the type of quantization to be used.
Also, if the A|H| chosen on a particular iteration is smaller
than any chosen on any previous iteration then it is stored

along with its corresponding sampling interval and the previously
stored values are discarded.

Whether or not A|H| is less than the previous smallest
value, the sampling time is increased by .Ol-tmax. If the sam-
pling time is then less than or equal to tmax a new set of coef-
ficients, differences, and magnitude response errors is gener-
ated. If the sampling time is greater than tmax then the
procedures of blocks 15 through 18 are executed. If there is
at least one A|H| of those considered which meets the error
criterion then the sampling time which gave the smallest A|H|
is output along with the A|H|. Otherwise a test is done to
see if the maximum number of iterations have been run through.

If they have then it is advisable to increase the word length

and run through the iterations again. If the maximum number

of iterations has not been reached then a new set of sampling
times should be tried. A search can be made around the immediate
area of the sampling time which gave the lowest AIHI, using a
smaller sampling time increment for the new iterations. Another
possibility is to merely offset the new sampling times from those
of the previous pass by a certain amount, for example .001'tm

ax’

A FORTRAN program which realizes the block diagram of Figure 1.1
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has been used to illustrate the procedure.

Second Order Filters

The block diagram in Figure 1.1 for first order filter
synthesis serv .« as well for second order filters. If a second
order low pass section is being designed, a possible evaluation
technique would be to evaluate A|H| at Q@ = 0 and at the 3-db
point for every sampling time considered. For a bandpass struc-
ture AIHI could be calculated at the 3-db points and the pole
frequency. In the example programs the user is allowed to
choose what radian frequencies the magnitude error is to be
evaluated at, and how many frequencies are to be evaluated.

The block diagram in Figure 1.1 allows every sampling
interval and corresponding set of coefficients which have a
A|H| smaller than the maximum error bound to be printed out.
The reason for this is very simple. In some cases a certain
sampling rate will be more desirable than another even if it
does not give the minimum magnitude response error. Such a
case occurs when the clock rate for the filter is limited to a
certain range of values. By printing all sampling times which
have magnitude errors within the desired bound, there is more
design freedom permitted.

So far the discussion has centered about magnitude response
design. Howecver, a bilinear z-transform digital filter will
not generally have the same phase response as the corresponding

analog filter. However, digital filters do have phase response

et i man
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and it is sometimes desirable to retain the accuracy of that
response. It is possible to make the phase response accurate

in the same manner that was used for the magnitude response.

In fact, the block diagram of Figure 1.1 can be used for the
phase by replacing |Hl by © in the diagram. A longer flow
chart could be developed which allows filters with accurate
phase and magnitude to be designed.

In terms of design limitations, the primary considerations
are those of aliasing and processor (or component) speed. When
deriving a program to find a sampling time which results in
small frequency response error, it is necessary to put an upper
E bound on the length of the sampling interval to reduce aliasing
errors. If the sampling rate is too low, a filter will be
aliased to the point where it no longer performs its designed

task. To reduce aliasing errors, it could be required that the

T

sampling rate be at least ten times the highest pole frequency.
1 There are various such rules of thumb aimed at avoiding aliasing
errors and which ever is appropriate should be used.

Digital hardware is limited in terms of clock rates it can
operate at. Some computers can perform an instruction in a
3 matter of nano-seconds while others require several micro-seconds
to do the same instruction. Similarly, discrete digital com-
ponents such as multipliers, adders, and shift registers are
I limited in speed. When designing a digital filter it is important
to realize the constraint of digital hardware speed on sampling

ﬁ time. If a computer program is used to realize a filter, the

program may be ten, twenty, or even over a hundred instructions
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long. Often, large filter structures are better realized using
discrete digital components which are dedicated to the filtering
because the discrete components have an advantage in speed over
a computer program. Whatever method of realization is used
though, thz2 design should not allow the clock rate of the filter

exceed the speed of the structure used to realize it.

Example Designs
A commonly used filter design is the maximally flat, or
Butterworth, filter. The low pass Butterworth filter has the
property that the filter magnitude response is as flat as possible
'Vat w = 0. For the present example, a fifth order Butterworth
low pass digital filter is synthesized using the method de-
scribed in the first part of this chapter. The analog transfer |

function, H(s), is given by

1 1 1

StL 24 618s+1.0000 s2+1.618s+1.0000

H(s) = (1.1)

so that H(s) has unity gain and unity bandwidth. The example
demonstrates the use of both the first and second order synthesis
programs. The bilinear z-transform allows the transfer function

to be broken up into first and second order cascade sections so
there is no partial fraction expansion to worry about. For the
example, the assumptions are that an eight bit word and a magnitude
error of less than 10—5 are desired.

The first order section, Hl(s), of H(s) is given by

]

i -
B8y = N




Figure 1.2 shows the sequence of interactive inputs to the program.
The first three inputs are self explanatory. After the word
length was input, the program used 100 sampling times between O
and the maximum sampling time allowed. An appropriate sampling
time was not found and the graph of Figure 1.3 resulted. The
graphs are not meant to be an absolute means of measuring the
error of the filter but merely a way of determining whether to
proceed or to try another word length or error bound. The mnext
input given in Figure 1.2 was a l(one) to indicate that on the
next iteration the same range of sampling times was to be used
but the sampling times would be offset from the previous set of
sampling times. The amount that the second set was offset was
one-tenth of the spacing of the first set of sampling times.
Therefore, there was a sampling time selected between each of

the first sampling times. Again the error bound was not met,
resulting in Figure 1.4 which is very similar to Figure 1.3.
Rather than continue on the same track, it was felt that a better
approach would be to "blow up" the region around the sampling
interval which gave the minimum error. 100 sampling times were
chosen between the two sampling intervals which were adjacent to
the point which gave the least error. The input of 2 in Figure
1.2 resulted in the expansion about the minimum point and the
graph of Figure 1.5. The error bound was still not met but there
seemed to be promise so another expansion was done. Figure 1.7
shows that the error bound was finally satisfied by three sampling
times. The output lists the three sampling times which allowed

the error criterion to be met and the corresponding coefficients
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and the type of coefficient quantization to be used on each set
of coefficients. Figure 1.6 shows the graph of the final expansion.
The 1listing on Figure 1.7 prints, as a final set of values, the
minimum magnitude error found and the sampling time which gave
the minimum error. If there had been no sampling times which
caused the error bound to be satisfied on that last round, then
it probably would have been necessary to use a longer word length
or accept a slightly relaxed error bound. Sometimes it is possible
to do enough passes to find a sampling time which gives low
enough error but in order to set the sampling time it would require
an infinitesimal adjustment and so the sampling time is not prac-
tically realizable. Even with programmable clocks, the adjustment
is usually only down to about 10-7 so adjustments below that
level are not possible.

The two second order sections, H2(s) and H3(s), are given
by

Hy(s) = — 1 1.3)

s +.618s+1.0000

Hy(s) = L (1.4) E
s%+1.618s+1.0000

Since there is no one general frequency which results in a maximum
for the partial derivatives in the expﬁnsion AH [1,2], then
several frequencies should be chosen to check those partial
derivatives. In the examples, four frequencies were chosen for

each section. Three were in the passvand and one was in the
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transition band of each filter section. The graphs of Figures
1.8 and 1.9 show the relative errors of the filters against the
sampling times for Hz(z) and H3(z), respectively. Some of the
errors are so large that most of the error points appear to be
very small but, in reality, only a few of the plotted points
resulted in filters which satisfied the error bounds.

The second order filter errors behave much differently than
the first order filter errors. The first order errors tend to
decrease as the sampling interval gets longer, while the second
order errors tend to increase. Also, the second order errors,
with a few exceptions as noted on the graphs, are generally
much lower than the first order errors. Therefore, it seems
that the word length restrictions on a filter would come from
the filter's first order section or sections. The design tech-
nique, then, should state that the first order sections should
be synthesized before the second order sections in order to get
a good bound on the word length requirements.

After considerable effort with more examples this approach
appeared to be somewhat limited, in fact, the method does not
generally work. To simplify the coefficient problem and to
totally eliminate the multiplier, a different procedure was tried

as shown in the next section.
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2. NEW DESIGN METHODS FOR DIGITAL CONTROL ALGORITHMS

The use of conventional digital control algorithms requires
the implementation of a recursive difference equation on a com-
puter. Here multiplication and addition operations are employed.
The finite length arithmetic causes roundoff errors to occur and
these errors can be highly dependent on the sampling interval.
Of particular importance are the coefficient rounding errors,
because if the coefficients are not rounded properly the al-

gorithm may be unstable or not exhibit the desired magnitude

and phase characteristics. Filter designs employing the bilinear
z-transform are very subject to these errors because the coef-
ficient sensitivity becomes increasingly critical as the filter

; order increases.

To avoid the whose process of multiplication and to decrease
the filter sensitivity to the sampling interval, a radical new
approach to filter implementation has been investigated. The
initial idea is that any filter can be approximated by a non-
recursive filter with a transfer function of the form

N
H(z) = £ a
k=0
Now if the filter can be structured in such a way to make the coef-
ficients powers of 2, all multiplication can be done via shifting.
If this is done, high order nonrecursive structures can be used

to approximate even low order recursive filters with definite

advantages.
The first advantage is that implementation can be done

directly using large scale integrated circuits. Such an imple-

|
|
‘
|
|
|
E
|
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mentation allows the shifting operations to be designated under
computer control so that a design can be used to implement a
variety of different filters.

The second advantage is that linear phase can be implemented
and this can be very useful in control system design.

The details of this work are provided by the report in

Appendix 1. Here the design methodology along with several

examples provide the necessary background for this implementation.

Experiments have also been tried on recursive filters using
the implementation procedure given in the report. The results
up to this time are mixed, however, using the integer design

approach we feel that good recursive filter implementations can

be obtained.
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3. INTERACTIVE SOFTWARE
Four interactive digital filter design packages were written
that are valuable to the designer of digital control algorithms
and/or digital signal processing algorithms. These are:
a. A Digital Filter Design Program Utilizing
the Bilinear Z Transform
b. Programs for Weighted Least Squares Design
of Nonrecursive and Recursive Digital

Filters

c. A Fortran IV Design Program for Low-Pass
Butterworth and Chebychev Digital Filters

d. A Fortran IV Design Program for Butterworth
and Chebychev Band-Pass and Band-Stop
Digital Filters
All of the programs are written in FORTRAN and run on the
DEC PDP-11 and the DEC GT-40 Graphics System. The detailed

descriptions are given in Appendices B, C, D and F. Card

decks were sent to WPAFB during the course of the contract.

4. TFAULT DETECTION

Because of the need to understand how well a digital control
algorithm is operating, some work was done on detecting when a
discrete time algorithm is not operating correctly due to hard-
ware or software failure. A parameter identification algorithm
was used with the method being described via the report of

Appendix E.
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ABSTRACT

The difference routing digital filter (DRDF) is a F1R
filter whose coefficients are equal to zero, or integral powers
of two. The basic DRDF structure is reviewed, and two coefficient
restrictions are detailed that will insure bounded input, bounded
output stability as well as a finite impulse response. Next,
three parallel structures are presented. Each of these new
structures will significantly reduce the RMS error between the
desired impulse response and the actual filter response. The
optimum structure appears to be a filter with a parallel struc-
tured transversal part with integer valued taps followed by a
recursive part that in the low pass case is a digital integrator.
For this new structure, an analysis is given of the RMS error
performance in both the time and frequency domain. This analysis

is supported by extensive computer simulation results.
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I. INTRODUCTION

Finite impulse response (FIR) digital filter structures are
attractive in a variety of applications. Among their advantages
are the inherent stability and the ease of realizing a linear
phase characteristic. Numerous methods now exist [1]-[3] for
the design of FIR structures.

One disadvantage of conventional digital FIR filters, in
many applications, is the slow operating speed due to the large ;
number of required multiplies. Various methods [4], [5] and , 4
[6] have been proposed in the past to reduce or eliminate this
multiplier requirement. This paper focuses on the low pass g
difference routing digital filter (DRDF) [4]. This filter
structure consists of a transversal part with coefficients
restricted to be zero, or integral powers of two. As originally
proposed, the DRDF is limited in the minimum RMS error that can
be obtained between the ideal and actual filter impulse response.

To reduce this error, three parallel structures are presented,
each of which can significantly reduce the RMS error between the

desired filter response and the actual filter response. These

three methods are all structurely similar, but there are distinct

differences in the design philosophy used. In the first two
methods, a parallel structure is created that approximates the
error that would have occurred in the original design. This

error signal is added in such a way as to provide overall error

reduction. In both cases, the parallel structure can be imple-

mented with minimal additional hardware. The third approach,

PN

which appears to be optimum, also uses a parallel filter structure.
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In this latter case, the purpose of the parallel structure is
to provide integer valued taps that more accurately approximate
the desired filter function. This third approach has two prin-
ciple advantages over the first two methods: (1) reduced hard-
ware requirements, and (2) a more straightforward and logical
design procedure.

Several examples of improved performance with the new
Structures are given using computer simulation. An analysis
of the RMS error performance of the optimum structure is also
given in both the time and frequency domain. The analysis is
seen to agree very favorably with computer simulation results.

This work was all done with low pass filter designs.
However, similar results can also be obtained for both band

pass and high pass circuits.




IT. LOW PASS DRDF STRUCTURE

The structure of a low pass DRDF is shown in Figure 1. The

of the transversal part are restricted

coefficients ao = i aN_1

to be zero or integer powers of two. The recursive part is a

digital integrator with a single coefficient b, equal to minus

i
H one. The coefficients of the transversal part are chosen to be

approximations to the differences between successive values of

the desired filter impulse response hD[nT]
Ry = hD[JT] = hD[(J-l)T] (1)
Thus, if the input signal to the filter is a unit impulse,

§[nT] for n = 0

]
[

(2)
=0 for n # 0.

Therefore, the output y(nT) will be an approximation to the
desired impulse response itself
N-1

h_[nT] = y[nT] = y[(n-V)T] + = a, §[(n-j)T] (3)
D §=0 3

The use of a digital integrator places one restriction

i on the aj coefficients to insure a finite impulse response

: (FIR) filter, the sum of the aj coefficients must be zero.

This is shown as follows. If the filter is FIR, then we

desire y[(N-1)T] to be zero.

Hence:
ylON=-DT] = y[(N-2)T] + ay , =0 (4)
but, N-2
y[(N-2)T] = L a, (5)
j=0




Therefore:
N-1
(6)

The restriction of equation six is not a practical problem.
Since the desired finite impulse response in practice will

always damp out to zero at (N-1)T as in Figure 2, we have:

N-1

h [(-D)T] = 0 = y[(-DT] = 5 a, 7
§=0

Therefore, the restrictions on the aj coefficients are:

G gesE e 0, 1, 2,

N-1
(8)
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III. DRDF OPERATION AND DESIGN

The design of a DRDF is based on approximating a desired
finite impulse response. Consider a desired impulse response
hD[nT], the first few samples of which are shown in Figure 3.
Without loss of generality, assume hD[O] is zero. Further,
consider that hD{nT] has been amplitude scaled (hD[nT] = F-hS[nT])
such that the maximum change is:

max [b_[§T] - h_[(G-1)T]] = e

where Km is the largest exponent being considered in the design.
Thus, the DRDF will approximate a scaled version of the desired
impulse. This scaled value is then multiplied by a scale factor
(F) to give the desired impulse response as in Figure 4. This
will insure that the coefficient values will be able to follow
the maximum slope of the scaled impulse response, hs[nT].

Note that:

max [hy[5T] = b [(G-DT]| = F S

Therefore, as Km increases, the scale factor F will get smaller.
The value of the first coefficient, ag is selected from O, t2h;
K=0,1, ..., Km so as to be closest to the first change

hS[T] - hS[O]. Since hS[O] equals zero, we have
a = hS[T] 9)

The design proceeds recursively, selecting aj from O, tl, 2 ue

to minimize:

j-1
- {hs[(j+l)T] -1 ak}[ (10)

| a
] k=0
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Figure 5 is a comparison of the entire desired impulse response
sequence hD[nT] and the error for the DRDF approximation for
Km=4. Figure 6 is a comparison of the desired magnitude response
and the error for the DRDF magnitude response. For this example
T = 0.05 sec and N = 200. The "IDEAL" Chebychev impulse response
used in this and all subsequent examples was obtained from syn-
thetic division of the H(Z) found using the impulse invariant
design [7].

Figure 7 is a plot of the RMS error between the desired
impulse response and the actual DRDF impulse response for the |
four pole Chebychev filter. The RMS error is expressed as a
percentage of the peak value of the impulse response, and it
is plotted vs Km. It is seen that little improvement results
beyond a Km of 3 or 4. The parallel structure introduced in the

next section provides a method of significantly reducing this

RMS error.

IV. PARALLEL DRDF STRUCTURE

It was shown in the previous section that increasing Km
beyond 3 or 4 dces little to further reduce the percentage RMS
error. There may be many applications where further improve-
ment is desirable. One way to do this is to both double the
sampling rate and also the number of ﬁransversal stages. For
example, doubling the sampling rate and doubling the number of

transversal stages will cut the RMS error in half. Since it

may not always be possible to double the sampling rate, and
since doubling the required number of stages is not attractive,
another alternative is desirable. Three different alternative

designs are considered below.

h--'“—"-"--'l"l!'l-ll-----‘--n----u----..s...—— ot ——
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In the first method, an error sequence e[nT] is defined as

the difference between the desired impulse response and that

actually generated by the DRDF. That is:

SEnEY = hylnT] = b, [0T] (1)

If the error sequence e[nT] of equation 11 could somehow
be approximated, é[nT] and added to the DRDF output, the new
signal h;[nT] = hA[nT] + ;[nT] would be a better approximation
to the desired signal. Since e[nT] is itself a finite duration
sequence, it is possible to approximate it with a second DRDF
filter as shown in Figure 8. These two parallel filters can
share much of the basic DRDF hardware as shown in Figure 9.

Note that the parallel DRDF will have its own scale factor Fz.
In some cases, F2 can itself be satisfactorily approximated

by an integral power of 2, however, in general this is not the
case.

Conceptionally, this process of approximating the DRDF
error could be continued to two, three or more parallel stages.
Of course, at some point it will be more expedient to use a
conventional filter structure.

Figure 10 is a plot of the percentage RMS error vs Km for
the basic DRDF and for one and two parallel stages. This is for
the Chebychev filter used in previous examples. It is seen that

the RMS error is reduced by a factor of about 3 each time a

parallel branch is added. Thus, RMS errors well below 17 of

the peak value of the impulse response are feasible with this

approach.
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The parallel filter does not approximate the error wave-
form nearly as well as the basic DRDF matches the original
desired impulse response. This is because the error sequence
is quite noise-like with rapid changes. The error waveform for
the Chebychev filter was shown in Figure 5. Except for the
final sequence valdes, the error signal is very much like white
noise. The sinusoidal appearance of the final sequence values
is due to the fact that the small ripple values in the desired
impulse response is being matched by a zero output from the
DRDF.

It has been found that a consistently beéter approximation
to the error signal may be made by roughly quantizing the
error signal to integer powers of 2 or zero. Thus, the new
filter shown in Figure 11 would be similar to that of Figure 9,
but without a second integrator. This is the second design
method.

Figure 12 is a plot of the percentage RMS error vs Km for
the basic DRDF and for one and two parallel stages where the
parallel sections are rough quantizations of the error signals
to integer powers of 2 or zero. A comparison with Figure 10
shows that this second approach is clearly better. Similar
improvements for other filters have also been found, and the
results of Figures 10 and 12 may be considered typical.

The third method is aimed directly at the reason why the
basic DRDF error performance does not improve as Km goes beyond
3 or 4. This is because as Km increases, the allowable tap
values are spread further apart. If, however, as Km increased,
all the integer values were allowable, then clearly the quanti-

zation would improve and result in reduced RMS error. It is
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worth noting at this point that uniform quantization intervals
of any desired value could be achieved with appropriate scaling.
This then represents a rough quantization of the transversal
coefficients with the subsequent integration acting to smooth
the overall impulse response.

Because of the speed and cost benefits, it is desirable to
obtain integer value taps with shifting and adding rather than
by the use of hardware multipliers. A direct appféach would
be to have a parallel filter section for various integer values
of 2. 1In this case, each tap weight would be constructed from
its binary equivalent. For example, for a tap value of 5 (101)
there would be three parallel filter sections with connections
made to the first and third, but not to the second section.

Each section would have its own adder. Figure 13 shows such
a filter which is capable of producing tap values O to 7, and
with suitable two's complement circuitry, -7 to +7.

A similar approach, but one with further hardware economies,

is to permit both positive and negative values of the integer
values of two. Refer to Table I. This shows how the integers
up to 42 could be implemented with just three parallel sections.
The first section could have up to five shifts, the second sec-
tion up to three shifts, and the third section a single shift.
Thus, 31 is implemented as 32-1 rather than as 16+8+4+2+1.
The optimum implementation of this concept will be dependent
on the application and device technology. One possible struc-
ture is presented by Kishi et al. [8].

Thus, we have considered a third method of reducing RMS

error that of creating integer value taps. We have also looked
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at several possible implementations of the integer tap concept.
A major advantage of the integer tap approach is that separate
scale factors (hardware multipliers) are not required in the
integer tap approach. A second advantage with this method is
that error performance continues to improve as the number of
shifts is increased. In the basic DRDF and the other parallel
filter approaches, improvement leveled off beyond a Km of 3 or
4.

Figure 14 compares the performance of the DRDF with the
integer tap approach for the four pole Chebychev filter. In
the graph at Km = 4, the basic DRDF is allowing taps values
of 0, +1, +2, +4, 18 and +16, while the integer approach is
allowing all the integer values 0, +1, +2, +3 . . . . +16.

For this filter, the integer approach surpasses the best re-
sults of the other methods at a maximum integer value of +138.

Figure 14 compares the performance of the basic DRDF with
the integer tap approach for the four pole Chebychev filter.

The design of the integer taps would proceed in a recur-

sive fashion similar to the basic DRDF design. Tap values aj

would be selected from the allowable integers O, tl, 32, s

iMAX to minimize:

i-1
L ak}[ (12)

la, - {h_[(G+1)T] -
4 - k=0
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V. TIME DOMAIN ERROR PERFORMANCE

An important measure of performance will be the RMS error
between the desired impulse response sequence hD[nT] and the
actual sequence hA[nT]. In the time domain, the RMS error can

easily be calculated for any filter design from:

N-1 h_[nT] - h, [nT]
i w3 =B z & (13)

n=0

where the subscript T stands for time-domain.

It is desirable to be able to estimate what this error may
be for a particular filter without going through the actual
design procedure. In this section, the time-domain RMS error
of the integer tap approach is estimated.

The errors measured at the filter output may be assumed to
be uniformly distributed with zero mean-and variance Q2/12 [&l.
In the case of integer taps Q = 1. Since the mean is zerc, the
RMS error will be 1/v12.

In actual practice, the designer would want to know how
the RMS error compared with the peak value of the impulse response
sequence. Therefore, it is desirable to have an estimate of the
peak value of the impulse response sequence. This estimate can
be made using the following rules.

1. The main lobe of a typical high order low pass filter will
have a width that is approximately equal to the reciprocal of

the cutoff frequency.

2. The average slope of the main lobe will be about one half

its maximum value.

LANL_
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Therefore, an estimate of the peak output of a DRDF can
be made given the filter cutoff frequency, fco, the sampling

interval, T, and the maximum integer, Im.

Im 1

2T 2 fco (14)

P s

In Table II, a comparison is made of actual and estimated

RMS errors as a percentage of the peak value of the impulse
response sequence. The percentage estimates are obtained by
dividing the RMS estimates obtained from equation (13) by the
peak value estimates from equation (14). In all cases, the
estimates represent a conservative bound on the actual error.
The RMS error estimate as a percentage of the peak value (Eé)
is thus seen to be:

E” =._2T_ (15)

i Im/3
Therefore, for a fixed sample rate, the percentage RMS error is

inversely proportional to the maximum integer value, Im.

VI. FREQUENCY DOMAIN ERROR PERFORMANCE

Since filter performance requirements are often given in
terms of the frequency domain, it is important to evaluate the
frequency response error performance.

The error sequence e[nT] is defined in equation (11) as
the difference between the desired impulse response and that
actually generated by the filter. 1In the frequency domain, the

magnitude of the error at any frequency wy can be obtained by

evaluating the z transform of e[nT) at z = eriT. Therefore,
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the magnitude response of the error may be written as:
A T N-1

Efu) & Bleeet™) = %
n=0

e[nT]z_nT

(16)

If equation (15) is evaluated for a set of frequencies W,
Wys wee Uy 9o then we can define an expression for the RMS error

in the frequency domain.

M;l (E(wj» 2
Ew = i . SO 7)

We can see from equation (15) that the value of E(w) and
hence, the value of the RMS error Ew is a function of the number
of coefficients, N in the FIR filter used to generate the impulse
response. In 1973, Chan and Rabiner [9] showed that Ew, the RMS

error in the frequency domain is found from:
Ew = /N ET (18)

here ET is the time domain RMS crror defined in equation (13).
Estimates of the frequency domain RMS error can be derived
from the time domain RMS error estimate by application of
equation (18). Table III is a comparison of the estimated
frequency response errors with the actual errors for the Cheby-

chev filter previously used.

VII. OPERATION EXAMPLES
Specific examples are given in this section of the time and
frequency domain performance of DRDF structures compared with

the ideal time and frequency responses. The marked improvement
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using the integer filter is also shown. Because the performance
is so close to the ideal, especially if an integer filter is used,
only the error (difference from ideal) is plotted along with the
ideal waveforms.

Figure 15 shows the ideal impulse response for the Cheby-
chev filter used in previous examples. Also, plotted with an

expanded amplitude scale are the error waveforms for an integer

filter with Im = 16. The improvement gained with the integer
filter is readily apparent by comparing Figure 15 with the basic
DRDF results of Figure 5. There are reductions in both the peak
and RMS errors. This same improvement is mirrored in the fre-

quency domain as seen in Figure 16 which shows the ideal magni-

tude response along with the magnitude errors for the integer
filter. Compare Figure 16 with the results shown in Figure 6.
Figure 17 shows the ideal step response for the same Cheby-
chev filter. Again, the error waveforms are plotted on the same
time scale and we see the improvement achieved with the use of
the integer filter. The step response also indicates that the
filter is BIBO stable. Very similar results are obtained with

all other low pass filter designs.

VIII. SUMMARY

The structure and performance of the difference routing
digital filter (DRDF) has been explored. Design restrictions
and the basic filter design have been detailed. Examples of
the RMS error performance were given.

Three enhanced DRDF structures were presented. Each of

these new approaches used parallel filter sections. The parallel
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filters could share much of the basic DRDF hardware. The optimum
approach was to use integer value taps constructed from three
parallel sections. The need for hardware multipliers was avoided
through the use of shifting and adding.

Expressions for the RMS error of the integer tap method
were derived. It was shown that the RMS error is inversely pro-
portional to the maximum integer used. A low pass four pole
Chebychev filter was used as an example. Similar results have

been obtained for other low pass structures and the results given

in this paper are typical of what might be expected.
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Im

16

32

Estimated
3.8 % 1072

1.4 = 107

7.2 % 1073

3.6 x 107>

1.8 % 1072

0.9 x 107

Comparison of Estimated and Actual
Time Domain RMS Errors
for the Integer Tap Filter

TABLE II

Actual

1.9
L.l
5.7
3.0
15

0.8

X

X

10

10

10

10

10

10

-2

=2

=3

-3

=3

-3




Im

16

32

64

b~

Estimated

0.396
0.198
0.102
0.051
0.025

0.012

Comparison of Estimated and Actual
Frequency Domain RMS Errors
for the Integer Tap Filter

TABLE III

Actual

0.240

0.140

0.065

0.033

0.012

0.007
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Appendix B

A DIGITAL FILTER DESIGN PROGRAM

UTILIZING THE BILINEAR Z TRANSFORM

by

Harriette Markos
and
Thomas A. Brubaker
Department of Electrical Engineering

Colorado State University
Fort Collins, CO 80521

ABSTRACT

This report describes the design of digital filters
obtained by the Bi.inear-Z transformation of analog filters.
The ideas formulated in this report have been coded into
a computer program which calculates the digital transfer
function coefficients. The magnitude function is then
calculated. The Bilinear-Z transform is applied with the
frequency warping carefully accounted for to obtain a
realizable, stable digital filter. The dependence on the
sample time is shown in the comparison of the digital and
analog magnitude functions. The phase functions are not

considered.

This work was supported by Contract #F33615-75-C-1138, Air
Force Avionics Laboratory, Wright Patterson Air Force Base,
Ohio 45433
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I. INTRODUCTION:

In network analysis the transfer function is a fundamental character-
istic of a system. The transfer function H(s) is defined by McGillem and
Cooper [1] to be the ratio of the Laplace Transforms of the response or
output signals to the excitation or input signals when the initial condi-
tions are zero. If the excitation voltage is represented as Vi(t) and
the response voltage is represented by vo(t), then the transfer function
is given by

Llv ()] V_(s)

s . (1)
L[vi(t)l Vi(s)

H(s) =

This H(s) transfer function is of interest because it describes the
network behavior. For simplicity, it will be referred to as the transfer
function.

This report and the computer program it describes are concerned with
second order transfer functions

2
G s €. s+ G

1 20 (2)
2

Dos + Dls + D2

H(s) =

These second order structures are fundamental building blocks for lowpass
filters, highpass filters, bandpass filters, and bandstop filters. For
more information on these structures see Budak [2].

Design of these filters is often done by specifying the magnitude

function H(w). In a filter design procedure the specifications on the

magnitude function are usually concerned with critical frequencies such
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as the frequency at DC; and w

, the frequency where the response

3
has decreased by 3db from the DC value. For high Q filters, the fre-

“oe*

quency where the magnitude function peaks 1is typically specified. This
frequency is referred to as the center frequency, w,e These frequencies
are the critical frequencies under consideration in this report. This
report is written to outline the procedure for use of the Bilinear-Z
transform as applied to second order filters. The BLZ program is a
computer program to perform the procedure outlined in the report.

The program accepts a second order function in s. Before apply-
ing the extended Bilinear-Z transform, the critical frequencies must
be prewarped as explained in Rabiner and Gold [3]. Then, the extended

Bilinear-Z transform described as

Z-1 (3)

is implemented and the equivalent discrete time transfer function in Z

is obtained:

A 22 + AIZ + A

2
Z + BlZ + B2

H(Z) = s (4)

The magnitude-squared function for (4) 1is obtained by setting Z = ej“"r

and taking the sum of the squares of the real and imaginary parts. In
the design program, plots of both the analog and digital filter mag-
nitude functions are available for presentation on a display screen.
The program recognizes real or complex poles as well as real or
complex zeros. When equation (2) contains both zeros and poles, the

program will consider two cascaded sections, one of zeros and one of

poles




where the cascaded sections may be considered as

.2
2 il Los + Cls + C2 (5a)
ZRO D
2
C
and HPOL(S) = 2 - (5b)
D s + Dls + D2

The program is developed with specific consideration for second order,
lowpass filters. However, any second order realizable structure can be
processed. The program will proceed as described with consideration of the
three critical frequencies: DC frequency Wpc? -3db frequency Wy and center
frequency W Proper operation of the program requires the filters to
have an wy or an w_ in order to calculate the discrete time transfer
function (4), with the magnitudes at the critical frequencies preserved.

The magnitudes at any other frequency may not correspond due to the frequency

warping.

II. DEVELOPMENT:
A. BILINEAR-Z TRANSFORM

The extended Bilinear-Z transformation is described in Rabiner and
Gold [3] and McGillem and Cooper [4] as a mapping from the s-plane to the
Z-plane with the following properties: the s=jw axis is mapped onto the
unit circle of the Z-plane; the left half of the s-plane (s<o) 1s mapped
to the i{nterfor of the unlf c¢ircle fn the Z-plane; and the right half of
the s-plane (s>0) 1is mapped to the exterior of the unit circle in the
Z-plane. Thus, the analog transfer function H(s) given by (2) is trans-

formed by (3) to the corresponding digital transfer function H(Z) given

|
|
|



-66—

by (4). The digital transfer function H(Z), evaluated at Z-eij. is

periodic in w with period wp= Z% , as explained in McGillem and Cooper [4].

The extended Bilinear-Z transform is given as

N
|
—

(3)

w
1
1LY

N
:|
P

and is applied by direct substitution for s. When the jw axis is mapped
onto the unit circle in the Z-plane, there is a nonlinear relationship
between the analog frequency w and the corresponding digital frequency Q.

Rabiner and Gold [3] illustrate this nonlinearity as follows:

Using equation (3) let s=jw and Z-ejQT so
jw=_2-.e_J_QE:_1.’
& eJQT+1

then multiplying numerator and denominator of the right side by e-jnle

J9T/2_~j91/2
ejQT/2+e—jQT/2

L
Jox & =

Recalling the exponential relations from Euler's equation

- 2 . TAN QT
0 Tg d 2
= 2 TAN QT . (6)
and so w T 2

Therefore, the analog frequency w is mapped to the digital frequency 0
by the relationship given in equation (6). When it is desirable to have
the discrete transfer function possess the same magnitude as the analog
transfer function at a particular frequency Wy the analog frequency
must be prewarped or altered so that when the Bilinear-Z transformation

{s performed this prewarped frequency will map into the desired

“A
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digital frequency w The w, is determined by

D’ A

TAN “DT . (7)

2

3>
—iro

The relationship of this wy to the coefficients of (4) is determined
and the prewarped coefficients for (4) are evaluated using the prewarped
value for Wy The process is described in more detail in the following
sections.

B. COMPLEX CONJUGATE ROOTS
A second order structure with complex conjugate roots is considered

as

Mos2 + Mls + MZ = (s—rl)(s-rz) (8)

where the leading coefficient of 82 is normalized to 1 by dividing through

by Mo. The roots are complex conjugates

r,=a + jB (9a)

r,=a- JB . (9b)

Equation (8) may also be considered as

w
()" ¢ g vt e g (10)

Q o
where wo =l 2
M
o

and Q=—""0

In equation (10), w, represents the distance from the origin to the location

of the roots, and Q indicates the slopes of the radial lines that connect




i

the root locations to the origin. For a<<g, Q>>1.

po

-ij

= _jB

Figure 1

a,d,wo, Q are related as follows:

w
PR
2Q
1
1 -2
B = w, 4Q
w =Va +Bz
qQ = a” + B‘

A plot of the magnitude function H(w) for complex conjugate poles
reveals a peaking effect with the maximum value at the center frequency,
W This is covered extensively by Budak [5]. The amount of peaking is
indicated by Q, where Q may be considered as a measure of the ratio
peak magnitude
DC magaitude . When Q is greater than five the peak will become prom-

inent so that the center frequency w, may become more important than

the -3db frequency w These high Q lowpass filters actually have a

3
bandpass type structure. Therefore, it is important to preserve the
appropriate critical frequency. The program utilizes a user input limit-

ing value, Q-limit. If Q is less than or equal to Q-limit, the ~3db

frequency wy is prewarped. But if Q is greater than Q-limit, the center

frequency wq is prewarped.




-69-

1. Complex Conjugate Poles

Recalling equations (2), (5b), and (10) the transfer function with

complex conjugate poles can be considered as

il 1 i -| (11)
H(s) = C2 3 = C2 5 = )
s +D.s + D;} s + os +tow J
saee e

2
where the s coefficient has been normalized to 1 by dividing through
by D .
(8]
To prewarp the -3db frequency, the first step is to calculate
wg At wa the magnitude has decreased by a factor of 3 from its DC
2
value so
H(s=0)| = {H(s=jw3)I
V2

or using the latter form of (11) and squaring both sides

To solve for Wy apply the quadratic formula employing the positive root

Z o =
w
2
w32 g %(Zw ) +312w02 ~ Y% = awob

o 2
Q | ““}
i Q
and recognizing that moz = D2
i preldya /('..2_.._"_1“2':—:". (12)
wy —/2 2 - 2) J
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At this time the digital w, frequency can be prewarped by equation (6)

3

to obtain the prewarped analog -3db frequency mg where

Now utilizing equation (11) and wg, the prewarped coefficients for

H(s) can be evaluated. Recognizing first that
D, = w (13)

\/E__Z (14) '_ i
Q

wO
D1=6—-=

then using (12)

2
2(w3) (15)

o
(¢
"

@-22+ V-7
Q Q

Dy =y (16)
Q
and

D =1. (%))

o P I (18)
To evaluate C/, note the DC gain at H(s=0) is DC = — = —
2 D, m°2

Since it is critical to retain the DC gain, Ci is evaluated to be

c, =DC - D; . (19)

The prewarped coefficients determined by (15), (16), (17), and (19)
now form a new transfer function H”(s) which when transformed by the
Bilinear-Z transformation will exactly match in magnitude the original

transfer function H(s) at the critical frequencies Wpe? and Wy
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Instead of prewarping Wy the center frequency w, could be prewarped.

Again, it is first necessary to locate W, Recalling that W, is the

center frequency of the peaking effect, differential calculus is used

to find the location of this extrema. Taking the derivative with respect

to w of the magnitude-squared function for (11)

2
d Cy

d
d;[ IH (ux'—'wc) | 2] =dt_u—l>(
L.

Z
i 2"(.0 2)2 o (wowc)
ot e

Setting the derivative equal to zero will yield the location w,

¢, 12 (w20 %) (<20 ) + 2(¥0%) (“o)]
Q_q

0
(w2 + (wgu)?1?

Q2

simplifying

2 2 w w w
2 (wy "=, )(-ch) + 2(_0 c _%) -0
Q/AQ

or
4w L bw w 2 4 2w w°2
c co 5 =0
Q
but waO )
2
m2=m2-mo
€ ",
2Q

and finally

(20)

Note, in (20) for Q greater than 10, w. is very nearly W,

.
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B

Now, employing equation (6) the prewarped analog center frequency

-

wo is obtained:

TAN YcT
2

The prewarped coefficients are found from (13), (14), (17), (19), |

and (20) to be:
]

B w2 - £ (21)

20 -2

2Q

R
Dl = Q~~ (16)
Do = an) 1
Ci = DC - Di (19)

As in the case of prewarping Wqs these prewarped coefficients
determine a new transfer function H”(s) which when transformed by the
Bilinear~Z transformation will exactly match in magnitude the original

transfer function H(s) at the critical frequencies Upes and W,

Example 1:

1
2
s + 0.1s +1

Consider H(s) = , where Q = 10.

Using a sample time of T = 1.0,

w, = 0.997497 and w, = 1.551026.

3

The digital transfer function coefficients can be obtained on print out

during execution of the BLZ program.




=T

Figures 2 and 3 are plots of the analog and digital magnitude

L functions with wq prewarped and W, prewarped, respectively. In both
cases, a sample time of 1.0 second was used. The sample time affects
the H(Z) magnitude function: For small T values {(less than 0.1
second) the two magnitude functions are nearly the same for all w

values. As the sample time increases, the two magnitude functioms

i
,
{
!

begin to differ from each other for all w values except the critical

frequencies. The sample time of 1.0 second shows this variation

clearly. Values of T greater than 1.0 second start to show larger

differences to the point that distortion causes the two magnitude i

functions to differ in an unacceptable manner.

2. Complex Conjugate Zeros
Recalling equations (2), (5a), and (10) the transfer function

with complex conjugate zeros can be considered as
2 s

[6) 2
[s + Cls + CZ}= 4 [s +;Q s + w, ]
2 1 D2 1

H(s) =

=

where the 52 coefficient is i(>rmalized to 1 by division chroughout by

G-
o
Considerations for the -3db frequency Wy and the center frequency
w, follow immediately from the development for complex conjugate poles
and are not reiterated here. The effect of Q in this case is to cause
a dip in the magnitude function and the . is found by locating a min-
imum rather than a maximum.

The prewarped coefficients for H(s) are found as follows:

I. Prewarped wq

c 2
e\ =2 [(2 = 1)+ (2 -1,) +4] (22)
“3 \/2[ o \/7 Q2
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O i
2(w3) (23) .

C. =
1 0
2 - 62) + JQZ = 62)2 + 4

c-

- /-2
¢ <Vg (24)
¢” =1 (25)
o
c
-2
D, " ¢ (i)
1
I1. Prewarped w.! %
1 3
w, = @ = 2Q2 27)
” 1
wlih— E TAN is’f_ ’
e R 2
S e SR ¢ (28)
Cl=wl=|—"——ro
2. la-z»
2qQ2
€2 = (E_g (24)
1 Vg
c; =1 (25)
Cl
o o L8
D2 De (26)

In both cases the prewarped coefficients form a new transfer function
H”(s) which when transformed by the Bilinear~Z transformation will exactly
match the original transfer function H(s) at the critical frequencies

Wpe? and wq in case I; or Wne and Wo in case II.

C. REAL ROOTS

A second order structure with real roots is considered as

Mos2 + Mls +M, - (s-rl)(s-rz) 27)
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where the roots are evaluated by application of the Quadratic formula

When
necessary
root case
prewarped

new trans

r, = —Ml +\/M12 = 4M0M2 (28)

r,o= M, -VM ¢ - 4M M (29)

complex conjugate roots are under consideration it is first
to locate the critical wy OF w, frequencies. In the real
this is not necessary. If each root 1is prewarped and the

H(s) coefficients determined from the prewarped roots, the

fer function H”(s) will yield an H(z) after the Bilinear-Z

transform which matches in magnitude the original H(s) at the DC

frequency
T used.
the roots
together
The

(6), the

Then

to be

Wpe and at one other frequency dependent on the sample time
The technique is to factor the filter coefficients to locate
. Then each root is prewarped and the sections multiplied
before applying the Bilinear-Z transform.
roots are found by equations (28) and (29).

prewarped roots are

r.T
. _ 2 TAN "1
e 2 o
oL 2N (31)
2 T 2

the prewarped coefficients are found by (27), (28), and (29)

(32)

(33)

Then using equation
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i (34)
My ™ Fy¥e -

If M. = 0 there is only one real root

o
-M
G (35)
M
1
. 2 TAN rT
Then r =7 )
and so
Mo =0 (36)
Mi =1 (37)
Mé = -r’ . (38)

A special case arises when M2 = 0 and Mo = 0, or when Ml = (0 and
M2 = 0, causing two roots at zero, or one root at zero, respectively.
In both cases TAN (0) = O indicating a linear relationship, hence, no

prewarping is required.

1. Real Poles

Referring to equations (2) and (5) the transfer functions with

real poles can be considered as

H(s) = cz[ gt } (39)
Dos + Dls + D2
where
D M
o] o
DM,
D,M,

in the previous development.




The roots (poles) and prewarped coefficients can be evaluated as

described before with C. being determined from

2
C
o = 2
2
hence
C2 = DC - D2 . (40)

2. Real Zeros

Referring to equations (2) and (5) the transfer function with real

zeros can be considered as:

i 2
H(s) = Dz [Cos + Cls +‘C2]

where
C <M
(o] o

Cl*-'M1

Co Ty

in the previous development.

The roots (zeros) and prewarped coefficients can be evaluated as

o
described with D defined by (40) to be Dj = 5(2—: ) (41)
Example 2:
Consider

il 5 oD

s” + 15s + 50
with poles at 5.0 and 10.0.

Figure 4 is a plot of the analog and digital magnitude functions for

this lowpass, real pole filter using two sample times. For the sample
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time of 0.3 sec., the analog and digital magnitude functions agree

exactly at Wpeo and at an intermediate frequency w However, for

1

the sample time of 0.2 sec., the analog and digital magnitude functions

agree at wp., and at a frequency wy different from w; - When evaluating
real root structures, the sample time has a direct effect on the
critical frequency value because the roots are prewarped, not the
critical frequency. Note that for first order sections prewarping

the root is equivalent to prewarping the -3db frequency. For the

first order sections in cascade the net -3db frequency will not match

because it was not prewarped.

D. H(Z) TRANSFER FUNCTION

After the prewarping is accomplished, the digital transfer function

is evaluated. The transformation is made by direct substitution of (3)

into the transfer function of prewarped coefficients giving

H(Z) = H'(s =

]2
.2 z-1 .2 z-1 5
= —= = —|+
z 1) > Co['r Z+] i Cl[x z+x] C
ST 72 p 5
D [Z Z=-1 " + D1[3 Z-1/+ D,

Z+1
T Z+1] T Z#]]

=N

Multiplying numerator and denominator by [T(Z+1)]2

| ¢ 122-D1% + ¢][22-D]T@+D)] + ¢[T(z+D) |
| R = 5 2@ D12 + b, [2(Z-DITEDT + b [T+ 12

Expanding, and then collecting terms

" ! AT Lo , . - Ze
[4Co - ZTC1 + T C2]Z + [2T°C, ~ BCO]Z + [4C° 2TCs + T 02]

H(Z) = 2 1 . (41)

5 R oyl 2e » > - b

[ADo + 21D + T 0212 + [2T°D,; - BDO]Z + IADO - 2TDl + T DZ]

Recalling equation (4)
2
AOZ 2 Alz + A2 (4)
H(Z)a-_z ’
L ¥ Blz + 82
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| 1
where
DEN = 4D° + 2TD + TZD’ i
o 1 2
and
A = [4C” + 2TC. + TZC‘]/DEN
[o) o 1 2
- o L
A = [2T c; 8C°]/DEN
5 b 2
A2 = [Aco - zTc1 + T C2]/DEN
20, P
B, [2T D; - 8D°]/DEN
: 5 2
BZ = [4Do - 2TD1 + T D2]/DEN :

E. CALCULATION OF MAGNITUDE FUNCTIONS
1. Analog Transfer Function H(s)
The magnitude function for the analog transfer function is obtained
by setting s=jw in (2) and finding the square root of the sum of the
squares of the imaginary and real parts:

t ¢ Puil® « ¢, (Ju) +¢C
Ho(w) = [H(s=jw)| =

and since j =/-1

. 3 E
(Cz—Cow‘) + j(Clm) g 3

2

b ()’ + D, (u) +D,

Hs(w) . 2
ﬂ (DZ-Dow ) + j(Dlw)

Then the magnitude of a quotient is the quotient of the magnitudes

(c,-C wz)z + (C w)z
B ) = . 2 50 1
: )2

iz
(Dz-Dow ) (Dlw

or equivalently

S

72 ~
(C.,-C w )" + (C,w)
H (w) = B S (42)

(uz-uom')2 + (Dlm)z

2. Digital Transfer Function H(Z)
The magnitude function for the digital transfer function requires

special consideration of the original analog transfer function. If H(s)
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is composed of one section of either poles or zeros, the digital magnitude
function is found using the prewarped H”(s) transfer function. But, if
H(s) is composed of two sections in cascade as in equation (5), there are
two transfer functions to be considered: the transfer function of pre-
warped coefficients for the pole section, H§0L(s); and the transfer

function of prewarped coefficients for the zero section, The

Hyro(8)-
(s).

resultant total transfer function is the product HéOL(s) . HiRO

The technique used here is to transform each section to obtain the digital

transfer function in cascades H . (Z) and H;,.(Z), then evaluate the

POL ZRO

digital magnitude functions for each section, and the resultant total

digital magnitude function is the product HPOL(w) - H,,.(w). In both

ZRO
cases the general technique to obtain the magnitude function H(w) from

JwT

a digital transfer function H(Z) is to let Z = e- , apply Euler's

formula, and find the square root of the sum of the squares of the

imaginary and real parts

j2uwT juT
juT Ao e + Al e + Az

H, (w) = |HEZ = )| =
“ ejsz + Bl eij + B

2 3

Recalling Euler's formula

erT = cos wT + j sin wT

and combining real and imaginary parts yields

[Aocos 20T + A

cos wlT + A,] + j[A sin 24T + A
1 2 [¢)
Hz(w) =1

cos 2wT + B,cos uT + BZ] + j[ sin 2wT + B

sin wT]
sin wT]

1
1

and since the quotient of the magnitudes is the magnitude of the quotients

[A cos 2wT + A,cos wT + A ]2 + [A_sin 2¢T + A sin w’l‘]2
() 1 2 0 1
Hz(w) =
[ cos 2wT + Blcos wT + 52]2 + [ sin 2uT + Blsin wT]2
(43)

In the case of the analog transfer function being composed of two

sections in cascade, the resultant total digital magnitude function is
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found as the product of the magnitude functions of each section. This
multiplication effectively destroys the correspondence of the critical
3db or center frequencies for each section, resulting instead in a new
critical frequency. Only if the critical frequency of prewarping is
identical in both sections will the resultant critical frequency be the

same. However, if critical frequencies for the total transfer function

are prewarped, such as in Butterworth filter design, then the individual

sections are not treated separately in terms of prewarping. This allows

the critical frequencies to be handled directly from input to output.
This form of design has been treated in two separate reports now being
revised. These are "A Fortran IV Design Program for Butterworth and
Chebychev Band-Pass and Band-Stop Digital Filters'", and "A Fortran IV
Design Program for Low Pass Butterworth and Chebychev Digital Filters'.

The revisions will be completed in early August, 1976.

III. OPERATION OF THE PROGRAM

The principles developed so far are utilized in the BLZ program.
Written in DEC Fortran IV, this program accepts a second order analog
transfer function, performs the necessary prewarping to match critical
frequencies, implements a Bilinear Z transform, and determines the
digital transfer function by the methods explained in section II.

A. INITIALIZATION

The operation of the BLZ program assumes a high degree of user
interaction via an external teletype or keyboard device. The user is
asked to supply, through input, the following initialization factors:

1. The program will request input specifying real poles or

) complex poles, real zeros or complex zeros. Input is in

the form of 1 for yes and 0 for no. As the program

receives each response a flag is set to each affirmative

B m——
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| reply. If flags are set for both zero and pole sections
a special flag is set to indicate two sections in cascade.

2. The program will request the range of w values the mag-
nitude functions are to be plotted over. A minimum w
and a maximum w are input in 2I3 format. This option
facilitates the opportunity of investigating any specific
region of the magnitude function.

3. The program will then request the total number of points
to be plotted. Input is in I3 format, however, only
values up to 500 are allowed under the current dimension
allotments. If more than 500 points are desired, the
dimension statement for the arrays used must be altered
to a value greater than or equal to the total number of
points plus two.

4. The program will request a sample time T in seconds and

the coefficients of the analog transfer function H(s).

As stated before:

2
C s“ + Cls + C2 . (2)
2

Dos + Dls + l:)2

H(s) =

The format statement here allows values up to F9.5. The
leading coefficients need not be normalized to 1.
NOTE: All input values must be presented in the format specified or

with decimal points and commas included in all relevant positions.

B. EXECUTION
After the initialization factors are received, the program proceeds

to calculate the analog magnitude function defined by equation (42).

..-.-..'.'."‘..'-'--"-tI-l--un---......u......-_,m“ .
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The user may have the computer output the DC value before responding to
a request to display a plot of Hs(m) versus w to be generated on a
display screen. The IDIOT subroutine is called for this purpcse, and
is included in the program package as explained under the section on
software.

The program control now advances into the transformational section
of its operation. If the special flag to indicate two se;tions in
cascade 1is set, the program will evaluate a magnitude function HPOL(w)

for the pole section, then a magnitude function H (w) for the zero

ZRO
section. The resultant total digital magnitude function Hz(w) is the |

product of HPOL(w) and H, o (w). 1If the special flag is not set, the

(0}
program checks first for the pole flags and then for zero flags. In
all cases, when a set flag is encountered, the control branches to the ‘
appropriate subroutine for the set flag. The subroutines serve to

evaluate the prewarped analog transfer function coefficients as described

in section II. In the case of complex conjugate poles or complex con-

jugate zeros, the user is requested to input a limit value for Q to
determine prewarping of wy OT w_. In all cases, the user will have the
option to print out such information as the -3db frequency, the center
frequency, or the prewarped roots.

As each prewarping subroutine is completed, control returns to the

main program. The Bilinear-Z transform is executed as described and the

digital transfer function is obtained. The magnitude function defined
in (43) is evaluated for the w range indicated by the initialization.
A plot of this magnitude function is available, and if the user so
indicates, the digital magnitude function will then be superimposed on
the plot of the analog transfer function. If the user so desires the

program will now output the minimum and maximum values of the magnitude
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function.

At this time the user is afforded the option to alter the sample
time T. If he responds affirmatively, the program requests a new T
value to be input. The control then branches to inquire if the user
desires to replot the analog magnitude function. If the user responds
negatively, the present display screen contents are retained and the
next plot will be superimposed with these same plots. If the user
responds affirmatively, the screen is cleared and the analog magnitude
function is displayed and the program proceeds as before.

In the case of two sections in cascade the program evaluates for

each section, then offers a plot of the resultant total digital magnitude
function. The options for the minimum and maximum magnitude values and
a new sample time T are offered as described before.

When the user is satisfied with the sample time used and rejects the
option to alter T, the program continues with an offer to printout the
table of values of the magnitude functions over the range of w values.

At this point, in the case of two sections in cascade, the user is
offered the opportunity to display plots of the magnitudes of each section
individually.

Two more printout options are available at this time: the prewarped
normalized analog transfer function coefficients; and the digital transfer
function coefficients. The final option is to run the program over again.
An affirmative response directs control to the initialization portion of

the program, while a negative response terminates the program.

C. HARDWARE
The BLZ program is written in DOS Fortran version 9.02. It was

developed on a PDP-11/20 with a DOS/BATCH operating system. The function

L- A b s —— Fo— i~ — ey
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plots were obtained using a GT40 graphics display terminal, with hardcopy
plots available on a Houston Instruments Plotter interfaced to the GT40.
All printed results were available using a Centronics line printer. The
program is written to be easily modified for use with systems of similar

configuration.

D. SOFTWARE
Operation of the BLZ program requires considerable user interaction
for data input. The program writes instructions and questions to unit 6.
The user responds with the appropriate data which is read from unit 4.
These two units must be assigned to appropriate output and input devices
at run time. Additional output is available to unit 5, which must also
be assigned to a device at run time. The program was written and tested
with units 4 and 6 assigned to a teletype keyboard and unit 5 assigned
to a line printer. A sample run using these devices is provided in figure 5.
The BLZ program is composed of a main block with four subroutines to
perform the prewarping:
RZRO
RPOL
CZRO
CPOL

and a subfunction TAN to calculate the trigonometric function tangent.

The program also calls the following routines from library files:

FLOAT IDIOT
SQRT RANGE
ABS
CcOS
SIN

The routines on the left are called from the DOS/BATCH FTINLIB. The

routines on the right are required for plotting. They are called from the

PLTLIB file and are included in the program package.
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The IDIOT subroutine was written for plotting applications on the GT40

graphics display terminal. Any subroutines required by IDIOT are included

in PLTLIB, along with the GT40 plotting routine (PDP-11 assembly language

MACRO). Explanation and documentation of the use of IDIOT can be obtained

by listing the program. All of the required plotting software for the GT40

has been included with the program package, or the user may incorporate his

own plotting routines.

Recommended set up procedures for use of the BLZ program are as follows:

1L

2%

Compile BLZ program. This assures system compatibility.
Compile PLTLIB.SRC.

Assemble SENDGT. This is the plotting routine to run the
GT40.

Build the subroutine library PLTLIB.OBJ including

1. PLTLIB.OBJ
2. SENDGT.OBJ

in that order.
Assemble and link PLOTGT.MAC for latter use in GT40 plotting.
Link together BLZ, PLTLIB, FTNLIB.

Load PLOTGT.LDA into GT40 and start it running.

Run BLZ (any changes on I/0 devices may be made now by assign-
ment statements for the devices 4, 5, and 6 as explained
previously.)
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SHS. KP4
SAS KE:, 6
$AS LP2s2S
SKU RLAZ

FESENNSE 10 CUESTIONS P=Nn  1=YES
1§ CENFLER ([HABES?

M COMPLE?. ZERGST
€ HEAL ZERES?

INFUT MIN by MAX W FORMAT(213)
510

INFUT NUMEFR OF FOINTS TO PLAOT FORMATC(I3)
50C

INFUT TsCWs»ClsC&»LE»C1,D2 FORMATC(T7F95)
(alsCelrPelslelslelslinlsled

I LECT PEC=GALN?
1. PLE@7 HCS) BEUNCTLIEN?

INPUT Q-LIMIT FNn COMFLEX FALES FORMAT(F10.6)
lel"

1 LIST FOLES,QeV=-CHITICAL?
I PLET HCZY FUNCTION?

1 FrINT MAGNITUDE MIN , MAX?

€ CHAMGE T?

 FrINT TABLE NF MAGe VALUFS?

1 LILT S-TOMAIN WAKFFL COEFFICIFNTS?
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I35 NTse: STNF 0000C0

7

FIGURE 5
TTY Keyboard Output
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INTRODUCT [ON
This report describes how to use two programs for the weighted
least squares design of nonrecursive and recursive digital filters.
First the theoretlical aspects are considered and the design equations
are developed. The signal model In this work Is assumed to be a
polynomial because the state model is simple. However, the theory is
easily extended to include any signal model represented by a linear

differential equation.

Then the operation of the two programs is described along with

examples to illustrate their operation.

e =
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LEAST SQUARES DESIGN OF NONRECURSIVE DIGITAL FILTERS

The design of nonrecursive and recursive digital filters using
weighted least squares is based on a model for the {nput slgnal.

The most common models that are currently in use are difterential
equations. The subsequent representation of the differential equa-
tion by a first-order vector differential equation leads to the
concept of a state variable and the state space representation for
a system. By use of the proper formulation, a continuous signal
represented by a differential equation can be described by a first-
order vector difference equation or a discrete time state space
model. References that describe the essential aspects of state
variables are by De Russo, Roy and Close [1] and Chen [2].

Since signals from laboratory instruments are not usually des-
cribed by a differentfal equation, approximations olten utilize a
polynomial. For this reason, the vector form of a polynomial approx-
imation will be used in this report. The reader should be aware
that this can be generalized to include any signal model that can be
represented as a linear time-varying differential equation. Later
in the paper a scalar model representing a Gaussian time signal
will also be utilized to develop a time-varying filter that can be
used for reducing the base-line error and for the initial separation
of signal components.

To develop the polynomial model let the signal z(t) be repre-
sented by a polynomial of order m. At the time t = nT the state

vector for the signal is given by
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z(nT) = (1)

LD z| t=nT

Redefining the state vector as

x(aT) = | 5; 2 )

L pm
[_m! D"2 | tanT

the use of a Taylor series representation for each element of x(nT)
now permits the state of system at t=(n+h)T to be described in terms

of the state at t=nT by the relationship

x[(n +# B)T] = &[h]|x[nT] 3)

where ¢[h] is the mxm state transition matrix with elements

PR, + SN
ylhl = sy - O<tm -
1<j<m
-0 1y

The state transition matrix ¢|h] satisfies all of the relationships
for general state transition matrices with the important two being for

this work

o(-h] = [e(h)]~} (5)




and

¢[m] o[p] = ¢[m + p] (6)

At this point, these models can be utilized in the design process.

Design of Nonrecursive Filters

Let the input signal start at time t=0 and assume that the signal
over a finite data window is approximated by a polynomial z(t).
1 Defining the state of the signal by (2), then the state of the signal
at time t=(n+h)T is given in terms of the signal at time t=nT by (3).
Given that the signal starts at t=0, the first 2 observations

are each defined as

i m(§T] = Mx[jT] + v[iT] j=0,1,2,...%~1 (7)

where M 1s a row matrix that relates the measurable state variables
to the actual measurements. The elements of each noise vector v[jT]
f are the measurement noises. In general these are taken as random
variables with zero mean and the time dependent autocovariance matrix

R[IT] = Elv(TIv (4T ] (8)

However, in most laboratory systems only the data is available and
the derivatives are not measurable. Furthermore, the noise covariance
matrix is usually not known and for scalar measurements the noise
variance is assumed constant and the noise samples uncorrelated. For
the remainder of this paper, only scalar measurements and uncorrelated
measurement noise with time-invariant statistics will be assumed. The
1 mean value of the noise will be taken as zero and the variance as 02
The results are easily extended to vector measurements and to measure-

ment noise with time varying statistics.
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For % observations, the total observation vector at t=nT is

defined as

_ |

m[nT|

' m| (n-1)T) ;
m [nT] =; : (9)

M[(n-2+1)'1‘];
' oLl

This vector now forms a data window of % data points. For an estimate

of the data at t=nT the use of the expression

x[(n=-3)T] = ¢(-j) x[nT] (10)
is combined with (9) to yield
o
I Mé(-1)
# mt[nT] =! ;g[nT] + vtlnT] (11)
| Mo[-2+1] ]
{ B

The matrix of constants H[nT] is now defined as

I .

MO[-2+1]
s

—

so that (1l1) can be written as

gt[nT] = H[nT] x[nT] + !t[nT] (13)

The elements in H[nT] are constants given by

Hy, = (-1)3 0ci<t (14)

3

0<J<q
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where & is the size of the data window and q is the order of the

polynomial plus one. When i=j=0 the value of (14) is one. Note that

since (12) is a matrix of constants there is no need to make the

matrix a function of time. However, in the derivation for the recur-

sive filters this provides a method for separating different H matrices.
The optimal estimate of the data at t=nT is now given in terms

of weighted least squares or minimum variance because this form is

utilized in the derivation of the recursive filters. If the covari-

ance matrix for the total observation vector 1is

- t
Rt(nT) = Ely, (nT) gt(nT)] (15)

the optimal minimum variance estimate is

x[aT] = W[nT] m_[nT] (16)

where ﬁ[nT] is a series of constant weights given by

W(nT] = [Ht(nT)[Rt(nT)]-lﬂ(nTi} _lﬂt(n'l‘)[Rt(n'l‘)]_l (17)

For uncorrelated noise with constant variance 02 (15) is a diagonal

2

matrix with elements 0“ and (17) reduces to

W[nT] = [H%(nt) H(nt)])™ ! ut(nT) (18)

This is the same result obtained using conventional least squares when :

the noise covariance is a diagonal matrix of equal constants. The

reader should be aware that the estimate vector Is an estimate of the

data and all of the derivatives in the model. However, all of the

weights in the derivative terms must be scaled by the scale factors in

the state vector defined by (2).
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The covariance matrix for the estimate given by (16) is given by

§(nT) = W(nT) R, (nT) WE(nT) (19)

Substituting (17) into (19) now yields

$(nT) = [H%(aT) [Rt(nT)]_l H(aT)] L (20)

H which simplifies further to

S(nT) = [HE(nT) H(nT)]-l o

(21)
for the uncorrelated noise.
By defining a delay or prediction factor a, estimates of the data

aT units behind or ahead of the point t=nT can be done. To do this

the total observation vector {is written as

m, (aT) = H_(aT) x[(n-a)T] + v _(nT) (22)

where Ha(nT) now takes the form

(-M¢(-a)
Mo (-a-1)
Ha(nT) = (23)

M¢(—Q—u+lj
; The individual elements of the matrix now become
f*
s o Dt 3
, Ha("T)ij (a=i)"  0<i<q (24)

0<j<q

The form for the optimal estimate now utilizes H“(nT) in (18). The

{ covariance of the estimate uses H"(nT) in (21).




Example

For a five-point window with a=0, the optimal weight matrix and
the covariance matrix for the estimate are shown in Table 1 for a
third-order polynomial fit. For a=2, the estimate of the data in

the middle of the window is obtained and weight matrix and covariance

matrices are shown in Table 2. This case corresponds to weights
given in reference [3].

In practice, the design of nonrecursive filters is initiated by
specifying the size of the window which is the number of rows in the
H matrix, the order of the polynomial approximation which is one less
than the number of columns in the H matrix and n which determines
the coefficient values in the H matrix. This makes the design suit-
able for use with interactive graphics since only three parameters
need be specified to generate the weight and covariance matrices.

If the model of the signal process is modified by additive
: uncorrelated driving noise, the variance terms of the driving noise

fade the memory so that past data has less effect on the estimate.

This can be thought of as uncertainty in the signal model. The con-

cept 1s particularly important in recursive filter design. For non-
recursive filters, it can also be utilized and can be useful when
using a non-recursive filter to initialize a recursive filter.

If the model includes driving noise, the state at time t=nT is

given by

x[nT] = ¢[-1] x[(n=1)T] + w((n-1)T] (25)

where w[(n-1)T] is a sample from a noise process with mean zero and

covariance matrix Q. This noise process is assumed to be white. In




~103-

terms of the total measurement vector, mt[nT] now becomes

gt[nT] = H[nT] x[nT] + Et(nT) + [nT] (26)

v,
where Rt[“T] is the total noise vector due to the driving noise. For

scalar measurements this is given by

o

-Mé[-1] w[(n-1)T]
-M¢[-2] w[(n-1)T] - MO[~-1] w[(n-2)T] (27)

Rt[“T] =

—_— =,

The total noise vector that corrupts the total measurement vector is

now defined as

gt[nT] = Et[“T] + yt[nT] (28)

For scalar measurements the covariance matrix for Et[“T] has diagonal
elements whose value increases down the diagonal. Since the diagonal
elements are not the same, the minimum variance expressions of (16) and

(17) must be employed to find optimal linear estimates.

Example

To illustrate how the driving noise affects the filter weights,
consider a zero order process which is equivalent to estimating a signal
of constant value. For a three~point filter with scalar measurements,

the total noise vector is

r |

v[nT] l

r, [nT] = vi(-DT| - wl(n-1)T] I
v[(n-2)T] - w[(n-2)T] - w[(n-1)T]

| i

aad

|
|
|
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2

I1f the variance of the measurement noise is a“ and of the driving

noise 012 the covariance matrix of gt[nT] is

02 0 0
RelnT] =| 0 o2 +02 0 (30)
0 0 (72 + 2012

The resulting weight matrix obtained using minimum variance 1is

W[nT] = [ao a, 32] (31)
where 5 ' 1
2 2 2 2
(nl + 0°) (201 + 0°) . (32)
e e L
2 2 2
o A P (39)
1 D
and
22 2
L Y (34)
2 D
where D is given by
D= (20,2 + 0% (0,7 + ") + 0% (20,7 + o) (35)
+ 020 * 4 02)
1
The terms in the weight matrix satisfy the following inequality
ag > a; > a, (36)
For 012 = 0, the equalities hold and a, =a =a, = 1/3 which are
the well known weights to estimate a mean. If 012 is not zero, the

inequalities hold and as 012 becomes large with respect to 02, a,

approaches one and a and a, become smaller so that fading is

i.IlIlllllIIIIlIlllIIllllIIlIllullﬁllH-llIl.-n--h----u---r~ . ‘ s “
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introduced. The covariance of the estimate is a scalar glven by

(0,2 + a%) (2012 + 0°) ol

S(AT) » ~—tmme = - ept 37)

where C is a dimensionless constant whose value approaches one as 012

becomes larger than 02. Thus for 012 >><;2 enly the current observa-

tion is effectively used and the variance of the estimate is approximately
02.

The fading obviously reduces the signal-to-noise enhancement of a
nonrecurgive digital filter. On the other hand, fading can be used to
reduce the deterministic error due to a nonexact model. In practice,
fading in nonrecursive filters is not often utilized. Instead, the
window length is more typically used as a design parameter. In future
work, however, it may be desirable to further explore the relationship

between fading and the size of the data window to achieve improved designs

when nonexact signal models are employed.

LEAST SQUARES DESIGN OF RECURSIVE DIGITAL FILTERS
The fixed memory or nonrecursive filter design is now extended to
recursive digital filters that utilize all of the data. The result is
a recursive form that is usually called the Kalman filter. While there
are a variety of derivations for the Kalman filter, starting with a fixed
memory filter using a polynomial model with driving noise gives the result
in such a way to give the reader greater intuition about how the filter

works.

The derivation of the recursive filter is started by using a signal

model

x[nT] = ¢[1] x[(n-1)T] + w[(n-1)T] (38)
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and the scalar observation or measurement model

y[nT] = Mx[nT] + v[nT]. (39)
In (38) and (39) the terms w|(n-1)T]| and vinT]| are the driving nolse
and the measurement noise. These nolse terms have zero mean and are

uncorrelated with themselves and each other. Given the n+l measurements
starting at t=0, the total ohservation vector at time t=nT is given in
terms of x[nT] as

y[nT] = H[nT] + gt[nT] + gt[nT] (40)

In (40) the matrix H[nT] is

MO -1 |

H{oT] = (41)

the vector Et[“T] is
f— g ‘]
-M¢[-1] w[(n-1)T]

2
gt[nT] = -Mjgl o[-(3-3)] wl(n-3)T] (42)

-Mjgl t[-(n+1-1)] wl(a-})T]

- —J

and yt[nT] is the total measurement noise vector. Defining the sum

gt[nT] = pt[nT] + yt[nT] (43)
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as the total noise vector with autocovarlance

2 L
Rt[nT] = Elgtlnfl :t[nT]} (44)

the optimal estimate using linear minimum variance is given by

x[nT) = WlaT] y [aT] (45)

where W[nT] is the weight matrix

W[aT] = (Ht[nT] Rt[nTii_l H(nT}| "} Ht[nT]‘Rt[nT;]_l
L d L due

The covariance of the estimate is
S[nT] = WinT] R _(0T] W' (aT] (47)

Substitution of (46) and (47) gives an alternate form

1

S(nT] = |HuE[aT) R, [nT] i u[nf? % (48)

which allows the alternate form for (46) to be written as
W[nT] = S[{aT] H'[nT] Rt[}nTi]_l (49)

The forms given by (46), (47), (48) and (49) apply to the remaining
estimates used in the derivation and the reader should remember them.
Next the prediction or forecast of the signal state X[(n+l)T] is

found by first writing the total observation vector xt[nT] as

Y [aT] = H, [aT] x[(a+1)T]} + p; [nT] + v, [nT] (50)
where HllnT] is given as
HllnT] = H[nT] ¢[-1)} _ (51) ;

and glt[nT] is &
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-Mo[-1] w(nT]

2
-M I ¢[-(3-1)]) wl(n-1-))T)
J=1

.

By [nT] = . (52)

n+l
-M I ¢[-(n+l~j)] wl(n-1-3)T
3=l

-

The term !t[nT] is the same as in (40) since no more observations have
been taken.

The estimate of x[(n+l1)T] is now given by

51[(n+1)T]= W (nT] y, [nT] (53)
where
W, [nT] =] H, [nT]|R [nTj -t 5 [nT; H, [ T][; [ T;!-l
| Bt 1 1t 1 i |1t =
(54)
In (54) is the covariance matrix of the ncise vector
glt[nT] = Blt[nT] + ytlnT] (55)

The corresponding covariance matrix for the estimate 51[(n+1)T] is

t
1

= T
= [ﬁ;[nT] th[nfﬂ 1 Hllnle 1

The development of the relationship between th[nT] and Rt(nT] is

Sl[(n+1)T] = Wl[nT] R t[nT] W, [nT] (56)

the next issue.

To obtain this recognize that since the random variables w|nT)|
and v[nT] are uncorrelated, th[nT] is the sum of the covariance
matrices for th[nT] and !t(nT]. For the latter, if the scalar noise

v(nT] has varilance 02, the covariance matrix of gt[nT] is a diagonal

h—__—"—'—-———-——.._.__..__~
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n+l x n+l matrix with elements 02. Taking the covariance of th[nT]

and performing some algebraic manipulation gives

E{p,  [nT] Eit[nT]} = Elp, [nT] Ri[nT]} + H,[nT] QH;[nT] (57)

where Q is the diagonal covariance matrix of the driving noise vector
w[nT]. This matrix is usually assumed to be time invariant. Thus, from
(57)

R, [AT] = R [nT] + H, [nT] QH](nT] (58)
Substituting (58) into (56) now gives

5,{@*)T] = W (oT] R [nT] W][nT] (59)

+ W [nT] H, [aT) QH;[nT] w;[nT]

If xl[(n+1)T] is an unbiased estimate then the constraint relationship

wllnT] HllnT] =1 (60)
must be satisfied [4] so that (59) can be simplified to

s, [(@+1)T] = W, [nT] R, [T] W] [nT] + Q (61)
Also recognizing that 51[(n+1)T] can be written as

%, [(@1)T] = o[1] x[nT] (62)
the weight matrix WlfnT] is

Wl[nT] = ¢#[1) W(nT). (63)

Substitution at (58) into (61) and applying (47) now gives the final

form for SI[(n+1)T] as
s, [(+D)T] = o[1] s(aT] ¢%[aT] + Q (64)

The recursion is now formulated. When the observation at t = (n+l)T

arrives the new total observation vector in terms of the signal state
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x[(n+1)T] is |
E y LTI = HL@HDT] + p [(D)T] 4 v [(+DT]. (65)
r
§ The estimate 18 given by
|
f x[(@+D)T] = S[(@+DT] K [(@+DT] R [(+DT] ™ (66)

with the covariance

=
$[(n+1)T] = [;t[(n+1)T]IEt[(n+1)Ti]-l BT Y (67)

where Rt[(n+l)T] is the covariance matrix of the total measurement noise

vector

Et[(n+1)T] = Et[("+1)T] + !t[(n+1)T] (68)

First the recursion for the covariance matrix is found. Given that

NN
{ -Mo[-1] w[nT]
Q 2
| M 2 #[-(3-1)] w((n+1-§)T]
| j=1
p, [ (n+1)T] = (69)
} n+l
-M I d[-(n+1l-j)] w[(n+1-j)T]
¢ j’l
substitution of (52) into (69) gives
0
2t[(n+1)T] =] - — ~ (70)
Ry [nT!
Next H[(n+1)T] is given as
[m |
H[ (n+1)T] =| Mo[-1] (71)

L_M¢[—(n+1{ﬂ
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which can be rewritten with the aid of (41) as

Me{1}

H(nT] = ol-1] (72)
H[nT]

The covariance matrix for th(“+1)T] is now an n+2 x n+2 diagonal

matrix with elements 02 so that Rt[(n+1)T] is seen to be

e

R [(a+D)T] = | - -|- - (73)

Since this is a diagonal matrix its inverse is

-

!
2
0

e

l

SPEERTE

)

I
o
L

-

Rt[(n+1)T] = (74)

Substitution of (74) and (72) into (67) and performing the matrix

multiplication now yields

=%
S[ (n+1)T] = “—t‘;‘ + of[-1] Ht[nT]Elt[nTEl "L dlnT] ¢[-1jJ-1 (75)

o]

Substitution of (51) into (75) and the use of the inverse of (56) gives

. t : -1
S[(n+1)T] = [ﬂ-% * [SI[nT] 'ﬂ (76)
g

Equation (76) along with (64) now forms a recursion for the covariance

of the estimate.
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For the quantitfes in (/6) the application of the matrix Inverslon

lemma [5], gives

R ~1
sllnrl 'i} = Sl[nTI (17)

MM,
2
O

B e
- 5 (aT| Mt (M 5 Int] w1 N 5 [nT]

This form will be used to generate an expression for the Kalman gain. Post
multiplying both sides of (75) by Mt/a2 and using (75) the Kalman gain is
defined as

K[ (n+D)T] = S[(n+1)T] M*/0° (78)

= 5, [(+1)T] M‘[o2 +M s, [(n+D)T] M‘]'l

Thus the covariance matrix given by (76) becomes

S[(+1)T] = [1 - K[(n+1)T] M| 5, [(a+D)T] (79)

The recursion for the optimal estimate i8 now formed that uses the Kalman
gain given by (78). Using the form for the optimal estimate given by

(47) the estimate i[(n+1)T] is
-~ ~ rq_ e
x[ (n+1)T] = S[(*1)T) Ht[(n+1)T];th[(n+1)Tl

= y, [(n+D)T] (80)

where Xt[(“+1)T] is the new total observation vector given by

yl(n+1)T?

zt[(n+l)T] =!~ - -— -
| X, [nT]

Substitution of (74), (72) and (81) into (80) and carrying out the matrix

(81)

~d

multiplication yields

2
M y((+1)T] —
a

—

x[(n+1)T] = S[ (n+1)T]

+ o(-1] Ht[JTI[;lt[nTll’l xt[nT]|
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t r = ;
ﬂf y[(n+1)T] + !Sll(n+l)T4 1 xll(n+1)T]| (83)
|

1 O !

x[(n+1)T] = S[(n+1)T]

e

Adding and subtracting (MtM/uz) xll(n+1)T], performing some algebraic

manipulation, and applying (76) now yields

o 7

x[(n+1)T] = 51[(n+1)'r] + K[(n+1)T] | y[(n+1)T] - M 51[(n+1)’l‘]| (84)

[ S

where K[(n+1)T] is given by (78). Equations (84), (79), (78), (64) and
(62) now form the recursive formulation called the Kalman filter. These

equations are now summarized as

x, @) = o(1) x[(-DT] , (85)

5,(aT) = o(1) S[(-1)T] o°(1) + @ , (86)

KD = §,(a7) M [0 + M s (ar) M7, (87)

S@T) = [T - K(T) M] S, (aT) (88)
and

x(@T) = x)(aT) + K(aT) [y(aT) - M x, (aT)] (89)

[I - K(aT)M] (1) x[(n-1)T] + K(aT) y(nT)

In this set of equations, xl(nT) is the forecast or prediction of the
estimate at t=nT using the previously generated estimate at t=[(n-1)T].
The covariance of the forecast is Sl(nT). The term K(aT) is the time
varying Kalman gain matrix and y(nT) is the observation at t=nT. The
terms ;(nT) and é(nT) are the estimate at t=nT and its covariance.

The term 02 is the variance of the measurement noise and the term Q is

the covariance of the driving noise. It is the term Q that serves as

a key design parameter.
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If there is no driving noise so that the diagonal clements of ()
are all zero, the filter is simply an expanding memory filter. This means
that if the filter is initialized properly, the estimates will correspond
to those obtained by designing nonrecursive filters where the data window
starts at zero and a new weight matrix &(nT) is computed as each new
measurement is made. Obviously as the window expands, the variance of
the estimate will decrease; however, if the model is not exact determinis-
tic errors will begin to increase.

In using the equations, they must be initialized properly if a truly
unblased estimate is to be formed. In practice this is usually done usinyg
a nonrecursgive filter. For exact initiallzation, driving noise must be
included in the computation of the nonrecursive filter weights. To mini-
mize the computation, the minimum H matrix should be used which means the
number of rows should equal the number of columns. By using this minimum
H matrix the filter weights are computed and the initial optimal estimate

is formed from the actual data.

USING THE PROGRAMS

HARDWARE

The programs are written {n DOS FO.TRAN. They were developed on a
PDP 11/20 with a DOS/BATCH operating system. Printed results are written
to logical unit 5, which can be assigned at run time to a line printer,
CRT terminal, disk file, or other suiftable output device. Data is c¢ntered
from units 6 and 3, which can be assigned to a card reader, disk data
file, TTY keyboard, or any other suftable {input device. Plots can be

obtained with a GT40 graphics display terminal and the plotting subroutines

provided. The programs can be easily modified to use other plotting routines.

’
M .
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NONRECURSIVE FILTER PROGRAM

The program for generating the coefficlents for non-recursive filters
is called PROGRAM WINDOW. WINDOW is written in DEC FORTRAN, but may be
run on other versions of FORTRAN IV with minor modifications. The program
can call plotting packages to produce CRT or hardcopy plots of the filter
response to various inputs.

Program WINDOW reads the filter parameters SIGMA, N, M, IA, IPLOT
from logical unit 6, where:

SIGMA determines the input covariance matrix R.
If SIGMA > 0.0, R becomes 02*I, where 02
= SIGMA and I is the identity matrix.

If SIGMA < 0.0, the matrix R is read from
unit 6 in 10F8.2 FORMAT.

N is the number of points in the window

(1 <N < 20).
M is the order of the polynomial fit (1 <M < 9).
IA is the offset a from the first point in the

window. If IA > 0, the filter predicts IA
sample times ahead of the most recent sample.
If TA < 0, the filter smooths IA sample times
behind the most rccent sample.

IPLOT is the plotting control variable. Tf IPLOT
= 0, the program finishes after the coeffi-
cient matrices are computed and printed
out. If IPLOT # O, an input signal is read,
and the input points are filtered using the
coefficients computed.

The parameters are read in F10.4, 413 FORMAT.

Once the filter parameters have been read, WINDOW generates the re-
quired S (covariance) and T matrices , and computes the welght matrix W.
All three matricies are then written to logical unit 5. [f [PLOT = O,
the program terminates after the weight matrix W has been printed.

If IPLOT # O, WINDOW reads 101 sample points from logical unit 3 in
G15.6 FORMAT. These points are provided by the user, and are used by

WINDOW as the filter input signal. The program filters this input signal

- — 4
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using the weight matrix W, and tabulates the input signal, output signal
(filter response), and error signal (input minus output) for each sample
time. The tabulated results are printed on unit 5. The sum of the total
absolute error is also computed and written to unit 5. WINDOW then calls
the plotiing package routines (subroutine IDIOT) to plot the input and
output (estimate) signals vs. time. After a PAUSE, the program calls the
plotting package to plot the error signal (input minus output) vs. time.
The plotting packages are included to be used with WINDOW, or WINDOW may
be changed to call other plotting routines.

Program WINDOW can be modified to write the derivative estimates.
Note from equation 2 that the mth derivative term is multiplied by a
Tm/m! factor, where T is the sample time. Thus, if the derivative
estimates are written out, they will be scaled by this factor. To
illustrate the use of the program, WINDOW was run with the parameters
 SIGMA = 1.0, N =5, M =3, 1A = 0, and IPLOT = 0. The filter weighting
coefficients are listed row by row, and are shown with the input para-
meters and S and T matrices {n Fig. 1. The filter obtained using the
weight matrix shown estimates the input data and the first three deri-

vatives. In equation form, these estimates are given by

x[nT] = 0.9857 y(nT] + 0.05714 y[(n-1)T] - 0.0857 y{(n-2)T]

+ 0.05714 y[(n-3)T] - 0.01429 y[(n-4)T] ,

x(nT] = 1.488 y[nT] - 1.619 y|(-DT] - .5/14 y[(n-2)T]
T
+ 1.048 y[(n=3)T] - 0.3452 y[(n-4)T]
T Al
x[nT] = 0.6429 y[nT] - 1.071 y[(n=1)T] - 0.1429 y[(n-2)T}

2/3

+

0.9286 y[(n-3)T] - 0.3571 y[(n-4)T)
/5

’
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x[nT] = 0.08333 y[nT] - 0.1667 y[(n-1)T]

/6

+ 0.1667 y[(n-3)T] - 0.08333 y[(n-4)T)

/6

RECURSIVE FILTERS
The Kalman filter program is called ADAPT. ADAPT is written in DEC
FORTRAN, but may be run on other versions of FORTRAN [V with minor modi-
fications. The program can call plotting packages to produce CRT or
hardcopy plots of the filter response to various inputs.
Program ADAPT reads the filter parameters SIGMA, M, and Q from
logical unit 6, where
SIGMA determines the initial covariance
matrix R. If SIGMA > 0.0, R becomes
02*1. where 02 = SIGMA and I is the
identity matrix. If SIGMA < 0.0,

the matrix R is read from unit 6 in
10F8.2 FORMAT.

M is the order of the polynomial fit
@ <M<9).
Q is the driving noise term.

The parameters are read in F10.4,I3,F10.4 FORMAT.

Once the filter parameters have been read, ADAPT generates an initial

S (covariance) and T matrix. ADAPT then generates an initial weight
matrix W, which 1is used to initialize the % vector. The initial covari-
ance matrix is used to initialize the é matrix.

Once initialized, ADAPT reads 101 sample points from logical unit 3
in G15.6 FORMAT. These points are provided by the user, and are used by
ADAPT as the Kalman filter input. The program filters the input using
equations 85 through 89. The sample number filter input, filter output,
error signal (input minus output), and Kalman gain are tabulated and

written to unit 5. The total absolute error is also computed and written
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to unit 5. ADAPT then calls the plotting package routines (subroutine
IDIOT) to plot the input and output (estimate) signals vs. time. After
a PAUSE, the program calls the plotting package to plot the error sig-
nal (input minus output) vs. time. After a second PAUSE, IDIOT is
called to plot the Kalman gain vs. time.

Program ADAPT can be modified to write the derivative estimates.
Note from equation 2 that the mth derivative term is multiplied byv a
™/m! factor, where T is the sample time. Thus, if the derivative
estimates are written out, they will be scaled by this factor.

To illustrate the use of the program, ADAPT was run with the
parameters SIGMA = 1.0, M = 3, Q = 0.0. The S (covariance) and T
matrices used to generate the initial weight matrix (W) are shown in
Fig. 2. The S and W matrices are used to initialize the Kalman fil-
ters' S and i matrices. The Kalman filter was then used to filter
an ideal sinusoidal signal. A portion of the tabulated results is

shown in Fig. 3.

GETTING ON LINE

In order to run program WINDOW and ADAPT, first build two files
named WINDOW.FTN and ADAPT.FTN from the sources provided (card deck
or paper tape). Also create PLT.FTN and SENDGT.MAC from the sources.
Coﬁpile programs WINDOW and ADAPT with the FORTRAN compiler to create
WINDOW.OBJ and ADAPT.OBJ. The one word integer option should be
selected for all compilations. Also, compile PLT.FTN to create
PLT.0BJ. Assemble SENDGT.MAC under the MACRO assembler to create
SENDGT.OBJ. Create a subroutine library called PLTLIB.OBJ from
PLT.OBJ and SENDGT.OBJ (in that order). Next, LINK WINDOW.OBJ,

PLTLIB.OBJ and the FTN library to create a file called WINDOW.LDA.
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Also, create ADAPT.LDA by LINKing ADAPT.OBJ, PLTLIB.OBJ and the FTN
library. The files WINDOW.OBJ, ADAPT.OBJ, PLT.OBJ and SENDGT.OBJ mav
now be deleted.

Before running WINDOW or ADAPT, build the file PLOTGT.MAC from
the source. PLOTGT is the plotting routine that is loaded into the
GCT40. Assemble and LINK PLOTGT so that PLOTGT.LDA may be lcaded into
the GT40. After PLOTGT.LDA is running in the GT40, ADAPT.LDA or
WINDOW.LDA may be executed using a RUN command. The source listings

contain additional documentation on these programs.
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++4F IMITE MEMORY OIGITAL FILTER FACKAGE+ ++

YARIAMCE 0OF ERROR= 1. P20

SIZE OF WINDOW= I

ORDER OF FIT=s 2

T0 PREDICT A UNITE RAWAY FROM THE FROMT OF THE LIMCOW

MAGIC T MATRIM

! 1. eana 3. B8y 8. 8889 5 55 ]
' 1 veoe -1. 280 1. BEBe -1. BOGY
1. 9994 -2. oee 4. 800 o %1% )
1. Ba9e -Z. 688 2. 200 -27. 99
1 aaa -4. 962 1. 89 -£4. 98
YARIAMNCE MATRIN, £
g, 2257 1. 482 8. 2422 9. 22ZZE-01
1 4gs £ ZI7V2 A~ AT B. 597
9. f42e Z 8e2 2 571 g 417
9. 22ZZE-01 2 3972 g 417 B 2Sd44E-212

HIMDOL HEIGHTS, FROM FRONT TO BRCH
ROW 1 OF W. CORRESFCHMDING T THE IMFUT ZIGMAL
8. 2257 8. E714E-91 -2 ZE71E-91 e STI14E-81 -2 1423E-21

ROW 2 OF W. CORRESPOMDING TC DERIVATIVE MUMEER 1
1. 422 =1, €12 -3. 5714 1 984:2 -8 D452

ROW 2 OF W, CORRESFOMDIMNG TO CERIWATIWE NUMEER &
8. 2423 -1. 071 -2 1422 8. 222E -Q. =57

ROW 4 OF W. CORRESFOMDIMG TC CERIVARTIWVE NUMEER =
A 2IZZE-91 -0 1€€7 -3. ZSTVEE~-: 2 LA=ET -8 2ZZZE-81

L)

Fig. 1 - Program WINDOW Sample Output
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DRIYMING NOISE= B Q0B

NROER OF FIT= =
INITIAL ERROR “YARIAMCE 1 12900

MAGIC T MATRINM
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STRUCTURE DIGITHAL

1 92204 2. 8898 8. 820 S e
1 8238 -1. BRABG DU > 1515 -1 3a
1 3864 -2 B9 4. 9 -2 By
1. 8693 -Z. BB R - [ 1) -27. Ve
VARIAMCE MATRIM. =
1. aeea 1. == 1. 8ga 89 1887
1. 2323 14 72 12 Sa . Ee11
1 289G 12 59 11 S 1 1)
B 1ee? o o 5 2. Sa8 g S55%
HWINOOW WEIGHTZ, FROM FROMT TQ EFRCE
ROW 1 OF W, CORRESFONDING TO THE IMNPUT
1. 92020 8. 4128E-95 -0. 2TRZE-OS 8. IEZTE-BE
ROW 2 OF W. CORRESPOMDING TO DERIVRTIVE
1. 822 -Z. 688 1. 568 =B EZZZ
ROW Z OF W, CORFESFCMDING TO CERIVATIWE
1 Aaaa -2. 589 < 000 -0 Se8s
ROW 4 OF W, CORRESFOMNDING TO DERIVATIVE
A 1es? —-0. 5909 8. Seed -8. 127

Fig. 2 - Program ADAPT Sample Output

FILTER FACKAGE ++*

=l

MHL

MUMEER 1

MUMEER Z

MUMEER =
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TIME OuUTPUT ESTIMATE EFRROF FARL GHIM
4 904 9. 2224 B ZEad 3 ZELIE-VE 8 2wesS7
b % 1% Q. 4794 0 4794 9 1e27E -4 8 IS
v 980 © TE4€ 8. SE4r A S4£BE-24 B3 24z
7 ARy ¥ E442 A Ed44] g 1ei?PE-az R 21eZ
2 ang 8 7174 [ W B B 1%E€ZE-BC 5 B T
9 263 @ 7222 Qa TeI1L A :_:9E-B: 3 2413

E 18 /a0 Q. 241% Qa 2417 B Z42ZE-0F a8 2%z
11 Q@ 0. 29212 9. &9z N 42ZQE-AZ 8. 7797
12 2a 9. IV a 2214 A EBAZE-AZ a Tie2
1Z a8 Q. PECE Q. €27 B S29BE-9Z L I
14 89 B FE5T g 24z B 114BE-2Z2 1 I
15 28 9. 3275 A 29532 A 1551E-A2 A =524
1= 83 g 223 9. 22T a3 ZRCEE-92 8 £23%
17 ag 8. 2917 g 2o 8. 27E8E-B2 A =8el
12 983 9. Avze 8 2vaz 8. ZE2RE-2Z 8 S242
12 83 8. 24> 3. 244 B 4ESIE-BZ B SE42
28 ag 9. 233z Q. 22z g SIZSE-BZ a S4e
1. 68 9. 2EZ2 9. 2552 3 T4S5S0E-82 8 S2e7
22 aa 3 2RSS Q. 73z Q. RZZIE-3Z 8. 512=
=Z a8 B TH4ET 3. 744 B 11Z0E-21 (5 I =T
294 @a 8. £7ES 9 EEl1Z a l*E’E -1 1% B ey
25 a3 g 5225 8. 5221 8 1=:25E-91 g 4e249
Ze 68 8. 5155 3 49l 8 19Z7E-91 g 455
27T as V. 4274 g 4847 e 227ZE-81 Qg 44z
22 a8 A ZIZ%0 B Zase 3 ZE4BE-AL a
g o [ A 2z22 % e P 3 Zu48E-21 (5]
ot e T g 1412 @ 104 B I4TZE-aL A
1 9a A 41S2E-21 A 22ESE-BE ¥ ZRZIE-91 5}
200 -3 S2IZITE-91 -3 1825 2 4417E-1L a
AN < (o] -9 1577 -a 287 9 4IZ4E-2L 3
zZ4 0 -Q. 29%% -3 Zlea A S44TE-AL “

) s -8 Z5az -3 41ex= B S2DlE-aL o !
7. a9 - 4425 -9. S@ar?v B ET12E-91 3 ,
7. B8 -3. 5222 -3 €84 2 TAtYE-91 5}

Z2 93 -d. €149 -3, €27 B TSVEE-2L =]
e e (5 -g. 22T -g. TELS 3 ZTEE-9) g
43 B8 -8 TSe2 -A 242= e 254ZE-61 .
41 Aa -t 2493 -3, 2828 2 SE2E-01 %)

B ~-8. 27T1E -8 €42 a 2zZeE-8l1 )

17 33 -9 Z1eZ -1 Q1= B FEZTE-AL A
14 @ -8. 2TLE -1 %y Q. 2ES5VE~el (5}

45 2@ -g AvTs -1. 77 A 20F-1 A
4 6 -@. 22=7 -1 929 g 22TE-21 )

75 -@. 2992 -1. 9= B 2221c-91 5] =,

= A8 -8 222 -1. 92 8 PE4CE-2L 5 e i
42 ad -@. 2232% -1. B7% B 2F2STE-aL 3 ZTES
S0 A3 -9. 2529 -1 94 B SEITVE-QL 8 27ie
91. 89 - -9, 2252 -1. 28% G TREZE-G1 a 27
S22 04 -g. 2225 -8 2SZT 2 TRZIZE-91 3 Zeza
SZ an -0. 2222 -3 2314 B S215E-9L Q. 2987
5S4 29 -8. 7722 -@. 21Ex 8 4520E-91 3 2Sde
5%5. 99 -@. 7855 =@, 7252 3 ZPZTE-QL B3 2587
SE. 90 -0. £212 -Q. €4Z7 g 13418121 AR )
S7. 94 -3, 5587 -@. 5429 -3 PTERE-RZ SRR S |
S22 a0 -8 4£4¢€ -3 4Z47 -2 ZAZZE-3L a 229%
52 99 -3, 2729 -, 212k -8 S5SZCE-91 2 228
£8. 90 -8 2724 -9 1%z -3 22eTE-01 a 222%
£1 99 -0 1822 -Q EITTSE-2L -9 1124 a 2298

Fig. 3 - Program ADAPT Sample Output
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0.9857 0.05714 -0.0857 0.05714 -0.01429
1.488 -1.619 -0.5714 1.048 -0. 3452
0.6429 -1.071 -0.1429 0.9286 -0.13571
0.08333 -0.1667 0.0 0.1667 -0.08333i

Weight Matrix

0.9857 1.488 0.6429 0.08333!

1.488 6.379 3.869 0.5972 |

0.6429 3.869 2.571 0.4167

0.08333 0.5972 0.4167 0.06944
i

Covariance Matrix
Table 1 Optimal Weight Matrix and Covariance Matrix For

a Five Point Nonrecursive Filter Using a Third
Order Polynomial Model. The Filter Estimates
the Data at the End of the Window
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-0.08571
-0.08333
0.1429

0.08333

0.4857

0.0

-0.1429

0.0

Table 2

0.3429 0.4857
0.6667 0.0
-0.07143 -0.1429
-0.1667 0.0

Weight Matrix

0.0 -0.1429
0.9828 0.0
0.0 0.07143
-0.21361 0.0

Covariance Matrix

0. 3429

-0.6667

-0.07143

0.1667

0.0

-0.2361

0.0

0.069AAI

-0.085/71

0.08333

0.1429
i

-0.08333"

Optimal Weight Matrix and Covariance Matrix For
a Five Point Nonrecursive Filter Using a Third
Order Polynomial Model. The Filter Estimates

the Data in the Center of the Window
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INTRODUCTION

This report contains the documentation for the LPASS program.
It consists of the design procedure used, a description of the
program, and design examples using the program.

The purpose of the LPASS program is the design of a maximally
flat Butterworth or an equiripple Chebychev lowpass digital filter.
Starting with an analog filter, the bilinear Z transform is used to
find an equivalent digital filter. The user enters the following

parameters: the number of second order sections, the type of filter,

the sampling interval, the -3db cutoff frequency, the starting frequency

and the frequency increment. If a Chebychev filter is being designed,
the ripple must also be entered.

The program calculates the digital filter coefficients for up to
three second order sections in cascade. The program is designed to
calculate up to a sixth order filter, thus the filter order is two
times the number of cascaded second order sections. The filter
magnitude response is generated over the frequency interval specified
by the input.

The LPASS program, written in Fortran IV, is supplied as a card
deck with this report. The program is in the form of a subroutine
and can be used as is by a call statement from the main program.

Data may be input via cards with output available through a line
printer. The input/output devices may be altered as explained in

this report. Graphics routines may easily be appended to the program.
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I. Design Procedure 3

A. Preliminary Discussion i
The transfer function of a second order digital filter in the

Z domain is given by

2
Kl(AOZ +A12+A2)

2248 L2+B

H(Z) = (a3

2

where the A's and B's are the coefficients of the numerator and
denominator respectively. One common method of designing a digital
filter is to start with an analog transfer function H(S) and
transform it to the digital transter function H(Z). This

program will calculate the scale factor K and the coefficients

1

AO’ Al’ AZ’ Bl, and B2. The transformation used is the extended

bilinear Z transform defined as

2 ,2-1
ST &G > (2)
where T 1is the sampling interval. When this transform is c¢mployed.

the desired frequencies must first be prewarped to make them com-

patible with the digital filter. The prewarped cutoff frequency is

given by

WDC = = Tan (—‘2‘—) " (3)

2

T

This prewarping is done by the program.
B. Butterworth Low-Pass Filter

We start with a normalized second order low-pass filter in

the S plane.

1
H(S) = 5 (&)
S™ + 2Scos6 + 1

B ————————— e
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where the angle 6 1s in degrees (in the program). 6 may be found

from the Butterworth circle and the relationship

o etj'n(Zm-l)/Zn

S (5)

where n 1is the order of the filter and m =1, 2, 3, ... , n.

This relationship is determined by the following procedure. By
definition, a filter is nth order Butterworth low-pass if its gain
characteristic is

a2 (6)

2n
1+ ()
w
c

_Gw |? =

where a 1is the gain, Wa is the desired cutoff frequency and n is

the order of the filter. Note that IHn(jw)l2 goes to zero as w goes

to infinity, indicating the filter does attenuate the higher frequencies.

To determine its efficiency as a low-pass filter we calculate

w 2n-1
=}
d . _ an “e
TolE G| = - & 75372 e
TS
w
(%
Thus
d i =
- [IH,,@») |]w=0 0 (8)

for all n and hence the gain characteristic stays flat for w close

to 0. Also

w=w 20 V2
c [

]

d
[351Hn<jw)l]

and hence, the decline rate or "roll-off” of the gain characteristic

M |
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aF = 0 becomes sharper as n increases. In other words, the
approximation to the ideal low-pass filter improves for larger n.
The order n 1is chosen according to desired specifications. The
references have equations, curves, and tables that select n, given
the specifications. For example, page 227 of Rabiner and Gold gives
an equation for calculating n when the tramsition band is specified.
In the design, the poles for the full frequency response, H(S),
of the nth order Burterworth filter must be determined. The pro-

cedure is as follows:

[ Gw) % = B GE_Go) = & (Go)E_Ge) = K (u)H (-ju)

2 2
= __é__ = ~——a—
[HSHES) g [ : Zn] . T
i L S T
c ] (]
( 9 1
— for n even
SZ o :
+ =
. [ 2]
a2 c
SR e O = (10)
1+ -|—
2 az
w \ — . for n odd
c 2_n>
i _2_1
Pl
S

Setting the denominators equal to zero,

L (tl)l/Zn
w
c

(11)

Thus, the pole locations are the 2n roots of *1, depending on whether
the order is odd or even. These roots are located on a circle with

radius W, centered at the origin of the S plane and have symmetry




-131-

with respect to both real and imaginary axes. For n odd, a pair of

roots are on the real axis and the rest are separated by n/n radians.
For n even, a palr of roots are located n/2n radians from the real
axis and the rest are again separated by =/n radians. No roots are
on the imaginary axis for either even or odd n.

Let Pis + + + s Py be the roots. From the symmetry of the pole
locations, 1if pl, s % o8 pn are the roots lying in the right-half
plane, the left-half plane roots are “Pys> ¢+« s TP_- The
magnitude-squared function can then be written as

az(—l)anZn
(S+py)...(S+p ) (S-p;)...(S-p )

Hn(S)Hn(—S) =

i<y

To be stable, Hn(S) must have all 1ts poles in the left-half planc, thus

n
c : (13)
(S+p1)...(S+pn)

aw

H (S) =

The program is written with unity gain at DC, (w=0), therefore a = 1.
In order to locate the poles as specified above, consider the

following set of equations.

1= —etJn(zm-l) , m=1, 2, . . ., n; for n even
: (14)
-1 = -eiJZTTk s k=0 by « « « 3 B for n odd
Substituting equations (14) into equation (11) yields
S o -
[zrﬂ+ = =e KRR i ,m=1, 2, . . . , n; for n even
Im
c
(15)
S +jmk
[;_]tk = <@ Jrkrn o k=20 X o . .oy nf for n odd
(o

Equations (15) will give the pole locations as described above.

Consider the form of equations (15)

+40

S=~n e
c

= wc[-cose *+ jsin@]. (16)
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From this relationship, it can be seen that the magnitude for each pole
is Wes regardless of the angle, and thus all the poles lie on a circle
with radius W,

As an example consider a second order filter, n = 2.

[Eflrm - _etjﬂ(Zm-l)/4 m=1, 2
Sy = W, /+45°

S, = w (%1352

6 = 45°

The relationship of these roots about the circle of radius w,
is illustrated in Figure 1. The angle 6 1is always measured from

the negative real axis.

In the program, only the angle(s) less than 90° are considered
so that poles lie in the left-half plane since poles in the left-half
plane are stable. Putting 6 = 45° into equation (4) yieids poles
at -0.707 + j0.707. These locations are in the left-half plane.

In the program, only even order filters are considered.

Below are the values of 6 for 1, 2, and 3 second order sections

in cascade.

Cascaded Filter Anale
Sections Order &
N n 0
1 2 45°
2 4 22.5°%, 671.5°
3 6 75%, 45%; 15°

These calculated angles are incorporated in the program in the order

given above.




-133~

For N second order sections there are N 6's. Only one specific
8 1is used per stage, because each stage has only one set of pole
locations.

The following is the procedure to derive the magnitude of the ith
stage, where i varies from 1 to N.

Given the normalized second order low-pass transfer function

equation (4), we employ the low-pass to low-pass transformation for

an arbitrary cutoff frequency Wo given by

s (17)
w
Cc

For the ith stage, equation (4) becomes

2

w

By (S) = 5—— 5 (18)
S"™+2Sw cosb,+w
c i ¢

The extended bilinear Z transform, equation (2), is used to get to
the digital domain. Employing equation (2) on equation (18) and sub-

stituting WDC for W, yields

2 a2
o wDC” (2°+27+1)
H @) = 7 (19)

—E(Z ~22+1)+%(22-1)WDC cosei+WDCZ(ZZ+ZZ+1)
T

Putting the denominator of equation (19) in monic form yields the

t transfer function for the ith stage of the filter
; Z
Kli(AOZ +A1
L el
Z +BliZ+B21

Z+A2)

(20)

Equation (20) is the same as equation (1) with the exception of the

subscripts. In equation (20)
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G =2 4 2 UDE cosd, + WHC (21)
i TZ T i
€ = WDC2
11 Gi
ZWDC2 - T%
B =
1i Gi
— - ﬁ-WDCcose +WDC2
T2 T i
B =
21 Gi
ST

Letting Z = e” and S = jw and taking the magnitude of Hi(jw) we

have

JQAocos(2mT)+A1cos(wT)+Azlit(Aosin(2wT)+Alsin(wT))2

'Hi(jw)i = Kli 2 2
(cos (2wT)+B, ,co8 (wT)+B,,) "+(Sin (2wT)+B, .sin(wT))
1i 21 14
(22)
This magnitude function is the same for both the Butterworth and the
Chebychev filters where 1 varies from 1 to N.
C. Chebychev Low-Pass Filter

The advantage of the Chebychev low-pass filter over the
Butterworth low~pass filter is that the transition band of the
response at frequencies greater than w. is sharper for the Chebychev
low-pass filter. This is achieved by specifying a small percentage
of ripple in the low-pass region. The amplitude of the ripple is

specified by the quantity & (labeled RIP in the program). Figures 6,

7 and 8 illustrate the rippling for second, fourth, and sixth order fi.-

ters, respectively. The poles of the filter are found on an ellipse

-
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described by two Butterworth circles of radii A and B with A<B.
The location of the poles on the ellipse is a function of the ripple,

8, and is given by the following equation:
B, & = 2((fTrreHY N & (e )7L/ (23)

where

s [ﬁ?é)“!' ]1/2 (24)

B is given for the plus sign and A for the minus sign. The Chebychev
ellipse then has major axis B and minor axis A. The location of the

S plane poles on the ellipse is given by

Real Part = A cos®
(25)
Imaginary Part = B sin6

The 6's are the same as given for the corresponding order Butterworth
filter. An example of Chebychev pole locations is illustrated in
Figure 2. For A =1/2 and B =1 in a fourth order filter,

8 = 22.5° and 67.5°. The Chebychev pole locations are determined

from equations (23), (24), and (25).

The analog second order Chebychev low~pass filter is

Kza
H(S) = 3 (26)
S +K85+K2
where
1 1/N
a= s (27)
]

€ 1s calculated from equation (24) and N is the number of second

order sections. K@ and K2 are calculated by

bt e
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K8 = 2Acos6 (28)

K2 = Azcosze + stinze . (29)

The substitution of the low-pass to low-pass transformation for some

cutoff frequency W equation (17), into equation (26) yields

K awcz
H(S, = (30)

2
2 2
S SKBwc + wc Kz

Using the extended bilinear Z transform, equation (2), and subsritvtine

WDC for w, we have for any section

KzaWDC2(22+22+1)
(31)

H(Z) = 4

—(22-22+1) + %K WDC(ZZ—I) + WDCZK (22+2z+1)
'1‘2 8 2

Collecting terms yields the following for the ith section

2
Kli(AOZ +A1

Z
Z +BliZ+BZi

Z+A,)
2 (32)

H, (@) =

where

2
8 + WDC K2

K1 * "¢ (33)




L
B,, = r
24 G

i varies from 1 to N. These coefficients are used to find [Hi(jw)l
given in (22).

For applications where a sharper roll-off is required the Chebychev
filters are used. The roll-off increases with n for any fixed e.
For fixed n, the roll-off decreases as € decreases. For small
€ the ripple width, &, 1is small, see equation (23), but so is the
roll-off. For larger & the roll-off improves but the ripple width
increases. In the first case the filter will be good at LC ana
low frequencies, unsatisfactory at high frequencies. The converse is

true in the second case.

B e i e

The above observations suggest the procedure to be used in
selecting a Chebychev filter to match a set of specifications. The
permissible ripple width specifies e. With ¢ fixed, select n

to attain the required roll-off.
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II. Using the Program

The first data card read into the program contains the number of
second order sections to be cascaded, N, and the type of filter
desired, KN. N is equal to 1, 2, or 3, which corresponds to

th, or 6th order filter respectively. KN =1 yields a

the 2™, 4
Butterworth filter, while KN = 2 yields a Chebychev filter. The
format on the N, KN card is 2I2. The second data card read in
is the sampling interval T in F10.6 format. When choosing T, 1/7
should be approximately equal to ten times the cutoff frequency, w, -
The third data card contains the value of Wa in F10.4 format.
For the Butterworth low-pass filter, w, is the -3db cutoff frequency.
For the Chebychev filter the magnitude of the response is 1/(1+cz)1/2
=1-6 at w = Wee @ is in radians. & 1is the ripple factor.

If the desired filter is Chebychev, i.e., KN = 2, the next
data card is the ripple factor (RIP) in F5.3 format. The filter
response for all even order Chebychev low-pass filters passes through

l/(l+s:2)1/2 =1-68 for w=0 and W, For odd order fiiters, the

BT

magnitude is 1 for w =0 and 1/(1+52) 1-8 for w=uw_.

c
This program produces only even order filters. If the desired
filter 1s Butterworth, i.e., KN = 1, this data card is omitted from
the data deck.

The final data card is the starting frequency (FREQl) and the
frequency increments (DELT) in radians. The format of the FREQl,

DELT card is 2F10.4. Determine DELT by the following:

final frequency - starting frequency

ks 1024

This is necessary because there are 1024 frequency data points calculated

in the program. Choose FREQl and DELT to insure that calculated values

i. . . . . ’ —-— . —




will include the data of interest. For maximum efficiency of the
program, DELT should be a multiple of 2% 50 no decimal to binary
conversion errors are incurred.

The digital filter coefficients are computed and printed out for
each second order section. The full filter magnitude response, as well
as each section magnitude response, is printed for each of the frequency
increments specified. When N = 1, the section magnitude response is
the full filter magnitude response and is only printed once.

The program may be easily modified to incorporate a graphics
digplay of the magnitude response. There is a comment card in the
LPASS program indicating where the graphics subroutine call card should
be inserted.

The program is written with input obtained via device 4 and output
written to device 6. These numbers should be assigned to the appro-
priate devices prior to running the program.

The program was developed on the PDP-11/20 with a DOS/BATCH
operating system. Trial runs frequently used a TTY terminal as
well as a card reader for input (device 4); and a TTY terminal as
well as a line printer for output (device 6).

Double precision arithmetic is employed. To decrease required
memory storage, only the frequency interval values and the full
magnitude response are saved. The section magnitude responses are
printed out, but are not stored. The program will produce approxi-
mately 21 pages of output.

Shown below are sample deck set-ups for the Chebychev and

Butterworth low-pass filters.
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Example

0302 (3 sections Chebychev low-pass)
0.001 (T = 0.001)

100 (wc = 100 radians)

0.10 (Ripple amplitude = 0.10)

70 0.06 (Start at w = 70. Steps o1l
0.06 radians. Will finish just
past w = 131 radians.)

0201 (2 sections, 4th
0.005 (T = 0.005)
20 (wc = 20 radians)

0 0.04 (Start at 0 Fi~4
past w = 40 radians in steps ot
0.04 radians.)

crder, Butterwo

The following pages contain annotated examples of output data.

This is an example of the output for a Ath ofder Butterworth

low-pass filter with T = 0.005 and Wo

= 20 radians. The starting

frequency 1s 0 radians and the frequency increment is 0.04 radian.

WDC = 20.01668

FOR I=1 A
A,
51

FOR 1=2 &
A
By

W

0.0000

0.0400

0.0800

0.1200

0.1600

0.2000

0.2400

WC = 20.00000 T = 0.50000E-02

0.10000000E+01 A

0.20000000E+01

= 0.10000000E+01 Kl = 0.22869799E-02

= 0.18219614E+01 B, = 0.83110937E+00

= 0.10000000E+01 Al = 0.20000000E+01

= 0.10000000E+01 K1 = 0.24059972E-02

= 0.19167786E+01 B, = 0.92640257E+00

H H1 H2

0.10000E+01 0.10000E+01 0.10000E+01
0.10000E+01 0.10000E+01 0.10000E+01
0.99999E+00 0.99999E+00 0.10000E+01
0.10000E+01 0.99997E+00 0.10000E+01
0.10000E+01 0.99995E+00 0.10000E+01
0.10000E+01 0.99993E+00 0.10000E+01
0

.10000E+01

0.99990E+00

0.10001E+01
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I is the ith stage. I varies from 1 to N.
WDC is the prewarped cutoff frequency.

WC 1is the cutoff frequency.

T is the sampling interval.

A

Al, and A, are the low-pass filter numerator coefficients.

0’ A

Bl and B2 are the low-pass filter denominator coefficients.

Kl is the gain factor.
W 1is the frequency.

H 1is the overall magnitude of the digital transfer function.

: H1 is the magnitude of the digital transfer function (lSt stage).
H2 is the magnitude of the digital transfer function (2nd stage).
H = H1*H2.

See Figure 4.

This is an example of the output for a 6th order Chebychev

low-pass filter (three second order stages cascaded) with T = 0.005

and w, = 20 radians. The starting frequency is O and the frequency

increment is 0.04 radian. The ripple is equal to 0.100.

WDC = 20.01668 WC = 20.00000 T = 0.50000E-02

A = 0.24783947 B = 1.03025433 K8 = 0.12829114 K2 = 0.99443709
A = 0.24783947 B = 1.03025453 K8 = 0.35049793 K2 = 0.56142438
A = 0.24783947 B = 1.03025453 K8 = 0.47878908 K2 = 0.12841170
FORI =1 Ao = 0.10000000E+01 Al = 0.20000000E+01

Al = 0.10000000E+01 Kl = 0.23830688E-02

B1 = -0.19774006E+01 82 = 0.98727357E+00

WDC2 = 0.40066761E+03  G(I) - 0.16142562E+06 A = 0.96548939E+00

FOR I = 2 AO

)
B =

0.10000000E+01 A1 0.20000000E+01
0.10000000E+01 Kl 0.13321469E-02
-0.19600541E+01 22 = 0.96557320E+00




FOR I = 3

.0000
.0400
.0800
.1200
.1600
.2000
. 2400

(o i <= I < W B o Y

WDC2 = 0.40066761E+03
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G(I) = 0.16303127E+06

A0 = 0.10000000E+01
A2 = 0.10000000E+01
B1 = -0.19519613E+01

WDC2 = 0.40066761E+03

H

0.89998E+00
0.89999E+00
0.90001E+00
0.90009E+00
0.90016E+00
0.90028E+00
0.90042E+00

G(I) = 0.16388496E+06

It

0.96549E+00
0.96549E+00
0.96550E+00
0.96552E+00
0.96555E+00
0.96558E+00
0.96563E+00

A. = 0.20000000E+01
K, = 0.30310788E-03
= 0.95321709E+00

H2

0.96549E+00
0.96549E+00
0.96551E+00
0.96554E+00
0.96558E+00
0.96564E+00
0.96571E+00

OO COOOOo

A = 0.96548939E+00

A = 0.96548939E+00

H3

.96547E+00
. 96548E+00
.96547E+00
. 96550E+00
.96551E+00
.96555F+00
. 96559ctuy

WDC is the prewarped cutoff frequency.

WC is the cutoff frequency.

T is the sampling interval.

B, A =_;_ e +1+€-1)1/2Nt(\/::2:]_+E-l)—1/2N)

I is the ith stage, I varies from 1 to N.

K, = 2Acosf.

8
KZ = A2c0329+B251n29.

A, A, and A, are the low-pass filter numerator coefficierts.

0’ "1 2
B1 and B2 are the low-pass filter denominator coefficients.
Kl is the gain factor.
WDC2 = (WDC)z.
G(1) = 2 + Zupc-K, + (WDC)’K,,.
T2 T 8 Z
, 1 1/2N
The A following G(I) is a =
: 2
1 %+ ¢

W 1s the frequency.

H 1is the overall magnitude of the digital transfer function.
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Hl is the magnitude of the digital transfer function (1St stage).
H2 is the magnitude of the digital transfer function (an stage) .
H3 is the magnitude of the digital transfer function (3rd stage).
H = H1*H2*H3.

See Figure 8.
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INTRODUCTION

This report contains the documentation for the BPASS program. It
consists of the design procedure used, a description of the program,
and design examples using the program.

The purpose of the BPASS program is the design of either a
maximally flat Butterworth or a Chebychev filter with equal ripple in
the pass band. For each type of filter there is a choice of band-pass
or band-stop filters. Starting with an analog filter, the bilinear
Z transform is used to design an equivalent digital filter. The user
enters the low-pass filter order, the type of filter desired, the
sampling interval, the upper and lower cutoff frequencies, the
starting frequency and frequency increment, and if a Chebychev filter

is being designed, the ripple. The low-pass filter sections are

transformed to second order band-pass or band-stop sections. Then the
program generates the digital filter coefficients for up to six
second order sections in cascade or up to a 12th order filter. The

design is carried out in the frequency domain. The program calculates

the transfer function coefficients for each second order section, the
magnitude function for each section, and the final cascaded filter
magnitude response over the frequency interval specified by the input.
The BPASS program, written in Fortran IV is supplied as a card
deck with this report. The program is in the form of a subroutine and
can be used as is by a call statement from the main program. Data
may be input via cards with output available through a line printer.
The input/output devices may be altered as explained in this report.

Graphic routines may easily be appended to the program.
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I. Design Procedure
A. Preliminary Discussion

One common method of designing a digital filter is to start
with an analog transfer function H(S) and transform it to the
digital transfer function H(Z).

The transfer function of a second order digital filter in the

Z domain is given by

2
K.(AZ° + A,Z + A,)
H(Z) = 1 2o 1 2 )

Z + BIZ + B2

where the A's and B's are the coefficients of the numerator and
denominator respectively. This program will calculate the scale

factor K1 and the coefficients Ao, Al’ AZ’ Bl, and BZ' The

transformation used is the extended bilinear Z transform
2,2 -1

S»>7G@FD -

(2)

where T is the sampling interval. When the extended bilinear 2
transform is employed, the desired frequencies must first be pre-

warped to make them compatible with the digital filter. In the

band-pass and band-stop filters, the upper and lower cutoff frequencies

and the center frequency of the filter are of interest. Calling the
upper and lower frequencies 0, and wy respectively, the pre-
warped upper (WDU), lower (WDL), and center (WDM) frequencies and the

bandwidth between WDU and WDL are found by
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2 muT
WDU = % tan(—f—)
T
2 ¢y
WDL = T tan(—f—)
/r"- (3)
il
2 muwl
WDM = T tan 3

WB = WDU - WDL

w, and w, are specified by the designer and the prewarping is done

by the program.
In the design procedure for all band-pass and band-stop filters of

order n'., (n'

even), the program begins by first finding the poles !
for the corresponding n'/2 order low-pass filter. The low-pass
filter is then transformed into a band-pass or band-stop filter of
order n', (n' = 2n).

B. Butterworth Band-Pass Filter

We start with a normalized second order low-pass Butterworth

filter transfer function in the § plane

H(S) =

— (%)
S” + 2Scos® + 1
where the angle O is in degrees (in the program) and may be found

from the Butterworth circle and the relationship

- eijw(Zm - 1)/2n

S (5)

where n 1is the order of the low-pass filter and m= 1, 2,..., n.
This relationship is determined by the following procedure. By

definition, a filter is nth order Butterworth low-pass if its gain

characteristic is
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2

2 a -
1B Ge}|® = ———ee (6)

1% )
c

where a 1is the DC gain, w, is the desired cutoff frequency and n
is the order of the low-pass filter.

In the design, the poles of H(S) must be found. The procedure

is as follows:

[H_Gw) | = H_(J0)E_Gu) = H_(Ju)H Go) = B (Ju)H_(-ju)

a2 a2
Bl T B paisen g e -
L+ 6=) R fﬁ;‘)
c = = c
]
.
a
, for n even
) In
S
1+ -
a2 “e
RN RS- < (7
9 D
st = 8., a2
2 ————— , for n odd
W 2 A0
-2
\ w
(0

Setting the denominators equal to zero,

$ . @i/ | (8)
€

Thus, the pole locations are the 2n roots of *1, depending on
whether the low-pass filter order is odd or even. These roots are
located on a circle with radius W, centered at the origin of the §

plane and have symmetry with respect to both real and imaginary axes.
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For n odd, a pair of roots are on the real axis and the rest are
separated by m/n radians. For n even, a pair of roots are located
m/2n radians from the real axis and the rest are again separated by
m/n radians. No roots are on the imaginary axis, for either even or
odd n.

Let Pyse-sPyy be the roots. From the symmetry of the pole
locations, if Pys«--sP, are the roots lying in the righ;-half plane,
the left-half plane roots are ~PysecesPy- The magnitude-squared
function can then be written as

a2(_l)nwc2n
(S + pl)...(S + pn)(S - pl)...(S - pn)

Hn(S)Hn(-S) = 9)

To be stable, Hn(S) must have all its poles in the left-hand plane,

thus

n
aw

_ c
Hn(s) (S + pl)...(S + pn) 3 (10

The program is written with unity gain at DC, (w = 0), therefore
a = 1.
In order to locate the poles as specified above, consider the

following set of equations.

_etjn(Zm - 1)

1= ,m=1, 2,..., n; for n even
{11)
-1 = _ethwk s k=0, 1,000, 0} for n odd
Substituting equations (11) into equations (8) yields
[%:]tm ‘esjn(Zm = 1/2n , m=1, 2,.., n; for n even
12)
[%—]tk = -etj"k/n s k=20, 1,..., nj} for n odd
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Equations (12) will give the pole locations as described above.

Consider the form of equations (12)
S = w0, etl0 wc[—cose + jsing]) : (13)

From this relationship, it can been seen that the magnitude for each

pole is W regardless of the angle, and thus all the poles lie on a
circle with radius W, -

As an example, consider a second order filter, n = 2.

S 4 o _tim(2m - 1)/4 ” &
[wc]tm e m=1, 2 ﬁ

Sil = mc/i45°

w
[}

i mCZtl35°

8 = 45°

The relationship of these roots about the circle of radius W, is

illustrated in Figure 1. The angle 6 1is always measured from the

negative real axis.

MLl e das

In the program, only the angle(s) less than 90° are considered
so that the poles lie in the left~half plane because poles in the
left-half plane are stable. Putting 6 = 45° into equation (4)
yields poles at -0.707 +3j0.707. Thege locations are in the left-half

plane. From equations (12), for low-pass filter orders n =1, 2,...,

6, the values of 6 are given below.
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Second Band-Pass
Low-Pass Order Band-Stop
Filter Cascaded Filter
Order Angle Sections Order
n 8 N n'
1 0° 1 2
2 45° 2 4
3 60°, 0° 3 6
4 22.5°%, 67.5° 4 8
5 2250365, 0 5 10
6 15° %97, 157 6 1:2

n 1is the order of the low-pass filter and is used to determine pole
locations. n 1is also the number of second order band-pass or band-
stop sections which results from the transformation of the low-pass
filter sections and which will be cascaded to form the band-pass or
band-stop filters of order n'. The transformation is explained below.
The calculated angles are incorporated in the program in the order

given above.

Given the normalized second order low-pass transfer function
equation (4), we transform this low-pass into a band-pass transfer

function for some bandwidth WB, and center frequency WDM by

f usin- the transform

32 + WDM2
&> ——

SWB ' (14)

S

Equation (4) then transforms to a 4th order transfer function

202
H(S) = ; S WB

s* + 53 2WBcoss + S2(2wDM? + WBZ) + S2WB WDM® cos® + WDM®

(15)

Using the root finding subroutine "POLRT" from the IBM Scientific

Subroutine Package (SSP), the roots of the denominator of equation (15)
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are found. (Note: POLRT has been attached to BPASS as a double
precision subroutine and is included in the card deck). The roots
found will be complex conjugate pairs. Calling the real and imaginary

parts of the pairs RE,, AIM,, RE,, AIM, equation (15) is factored

to yield two cascaded second order sections

SWB
H(S) = = ) 73 0 7 (16)
S™ - ZSREl + REl + AIMl S - ZSREZ + RE2 + AIMZ

For each 8 of a given N, the program calculates roots for both
sections of equation (16) and labels them the ith and the ith + 1
section. If N, the number of second order sections specified, is
even, the program will calculate N pairs of RE and AIM values
or 2N = n' roots. If N is odd, the last value of 8 1is O.
Substituting 6 = 0 into equatjon (4) and factoring yields two
identical first order sections, 1/(S + 1). The program will calculate
N+ 1 pairs of RE and AIM values, but because the last two pairs
are the same due to the identical first order sections, the last pair
will not be used.

Because both second order sections of equation (16) are of the
same format, we will deal with only one section, the ith section

and let

-2RE, =D
LA a7
2 2
REi + AIM1 = Ci

The design of an n'th order band-pass or band-stop filter leads to

n'/2 second order sections. Substituting equations (17) into one

T ———————




section of equation (16) yields the transfer function for the ith

section

i SWB
H () = — . (18)

S” + SD. + C,
i i

The extended bilinear Z transform, equation (2) is used to get to
the digital domain. Employing equation (2) on equation (18) yields

Hi(Z) for the ith second order section.

%wszz ~%wn
e =zz(-’i—+331+C)+Z(2c - By (—“—-ZD—1+C) .
2 T i 2 2 2 iE i
T B T
Putting the denominator of equation (19) in monic form yields the
transfer function for the ith second order stage of the filter
Kli(AOZZ + Alz + A2)
B (2) = —= (20)
Z + Bliz + B21

This equation is the same as equation (1) with the exception of the
Su.oo.ipts. For all four filter types discussed here, the scale

factor, Kl’ and coefficients B, and B, are a function of the

1 2
section calculated, while the coefficients AO' Al’ and A2 are the

same for all sections calculated. In going from equation (19) to

equation (20) we have
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2
Ao = TNB
Al =0
2
A2 = - TWB
2D
. S
Gy ¥ T H c1 (21)
T
11
b Gy
8
2Ci e
B _ o
11 Gi
L S
2 T i
B -
2i Gi
_ ST _ _juT
Letting Z = e = e for S = jw and taking the magnitude of

Hi(jw) we have

/(;ocos(ZwT) + Alcos(mT) + Az)2 + (Aosin(ZwT) + A sin(wT))z

1

lHi(j“’)l = Kli

(cos(2wT) + B, ,cos(wI) + 321)2 + (8in(2uT) + anin(wT))Z

(22)

11

The magnitude function, equation (22) is the same for all the filters

% discussed in this report. ‘
C. Butterworth Band-Stop Filter |

The design procedure is almost exactly the same as that j

of the Butterworth band-pass filter, except that the transformation ]

to band-stop is the reciprocal of equation (14), i.e.

S » __SLB__ (23)
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and we find Hi(S) to be

82 + WDH2

S2 + SD, + C.
i i

H.(S) = (24)

After employing the extended bilinear Z transform, equation (2),

we have
i B 2
AO = A2 T2 + WDM
(25)
A, = oo’ - S
T }
and Bli’ BZi’ Kli are the same functions of Ci and Di as 1in i

equation (21). These coeffiéients are then used in the calculation
of equation (22) to find |Hi(jm)]. |
D. Chebychev Band-Pass Filter

The Chebychev filter ripples with equal amplitude in the
pass-band. The amount of ripple is specified by the quantity §
(labeled RIP in the program). The poles of the filter are found on
an ellipse described by two Butterworth circles of radii A and B
»ith A < B. The location of the poles on the ellipse is a function of

the ripple and is given by the following equation:

B, A = %((»/s'2 +1+eHW 4 (2 e 14 HH )
where
e = [___1___2 < ]’i (27)
(1 - 96)

and N 1s numerically equal to the order of the low-pass filter

which is transformed to yield the band-pass filter. B 1is given




for the plus sign and A for the minus sign. The Chebychev ellipse
then has major axis B and minor axis A. The location of the S

plane poles on the ellipse is given by

Real Part = A cos®

Imaginary Part = B sin® (28)

The 6's are the same as given for the corresponding order
Butterworth filter. An example of Chebychev pole locations is
illustrated in Figure 2. For A = % and B =1 1in a fourth order
filter, 6 = 22.5° and 67.5°. The Chebychev pole locations are
determined from equations (26), (27) and (28).

The analog second order Chebychev low-pass filter is

" [ 1 ]2/1\1
2| T —
1 + 62
5 (29)

S” + KSS KZ

H(S) =

e 1is calculated from equation (27) and N 1is equal to the order of
the low-pass filter which is transformed to yield the band-pass filter.

K nd K, are calculated by

8 2
K8 = 2Acosh (30)
K, = Azcosze + stinze - (31)

The substitution of the low-~pass to band-pass transformation,

equation (14), into equation (29) yields

Szmzxz[ 1 ]zm
3
H(S) = -21 ted . (32)

s + 3k wB + s%cawnM? + xzwnz) + sxawnnzwn + WDM

8




After finding the roots of equation #32) and making the substitutions
given by equations (17) we find the ith second order section

SWK3
Hi(S) 3 ’
ST+ 8SD, +C
i i

[}

1/N

~
|
;q
’_‘

(33)

Applying the extended bilinear Z transform equation (2) yields an

equation of the form of equation (20) where

AO = 1
A1 = 0
A, = -1
K
By =g " Ef (34)
B and B are the same functions of C, and D1 given by

1i 21 i
equations (21). These coefficients are then used in equation (22) to

find lHi(jw)l.
B Chebychev Band-Stop Filter
Given equation (29) for H(S) we apply the low-pass to
band-stop transformation equation (23) to obtain the 4th order

transfer function
(s2+wm2)2x2[ 1 ]Z/N

/1 + 52

WDM%) + SK

H (S) = 7 3 (35)

K2$ + S7K

WDMZWB + K WDM“

2 m
WB + ST (WB™ + 2K 8 2

8 2

N is equal to the order of the low-pass filter which is transformed

to yield the band-stop filter.




After finding the roots of equation (35) and making the

substifvrions given by eanations (17) the ith second order section is

s? + wnnz)x3

H,(S) = ,
i 2
S + SDi + Ci
K = /i_ 1 1/N . (36)
3 2
1+ ¢

Applying the extended bilinear Z transform equation (2) yields an

equation of the form of equation (20) where

» . 2
AO = A2 i + WDM
T
A, = 2wpM® - & (37)
1 7
T
e
1i G,

1

Bli and BZi are the same functions of Ci and Di given by

equations (21). These coefficients are then used in equation (22)

to find lHi(jw)|.
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II. Using the Program

The first datg card read into the program contains the number of
second order sections to be cascaded, N, and the type of filter
desired, KN. N is equal to 1, 2,..., or 6, which corresponds to
the order of the low-pass filter, and hence corresponds to the 2nd,
4th,..., or 12th order band pass or band stop filter respectively.

KN is the type of filter desired. The values of KN specifies

one of the four choices given by

KN Type

Butterworth Band-Pass
Butterworth Band-Stop
Chebychev Band-Pass
Chebychev Band-Stop

W N

The format on the N, KN card is 212.
The second data card read in is the sampling interval T in

F10.6 format. When choosing T, 1/T should be approximately equal

to ten times the center frequency (WDM).
The third data card read in contains the values of the upper

and lower cutoff frequencies, W, and w,, in 2F10.4 format. For

1°
the Butterworth filters, the cutoff frequencies are the -3db cutoff
frequencies. For the Chebychev filters, the magnitude of the
response is 1/(1 + ez)% =1 - 8§ at the cutoff frequencies. w 1is in
radians. 4 1is the ripple factor.

If the desired filter is Chebychev, i.e., KN = 3 or 4, the
next data card contains the ripple (RIP) factor in F5.3 format.

I1f the desired filter is Butterworth, i.e., KN = 1 or 2, this

card is omitted from the data deck.
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The final data card is the starting frequency (FREQl) and the
i
frequency increments (DELT) in radians. The format of the FREQl, }

DELT card is 2F10.4. Determine DELT by the following:

_ final frequency - starting frequency
1024

DELT

This is necessary because there are 1024 frequency data points
calculated in the program. Choose FREQl and DELT to insure that
calculated values will include the data of interest. For maximum

efficiency of the program, DELT should be a multiple of Z—K so no

decimal to binary conversion errors are incurred.

The digital filter coefficients are computed and printed out for
each second order section. The full filter magnitude response, as well
t as each section magnitude response, is printed for each of the
specified frequency increments. When there is only one second order

section, the section magnitude response .s the full filter magnitude

response and is only printed once.

The program may be easily modified to incorporate a graphics
display of the magnitude response. There is a comment card in the
BPASS program indicating where the graphics subroutine call card
should be inserted.

The program is written with input obtained via device 4 and
output written to device 6. These numbers should be assigned to the
appropriate devices prior to running the program.

The program was developed on a PDP-11/20 with a DOS/BATCH
operating system. Trial runs frequently used a TTY terminal as well
as a card reader for input (device 4); and a TTY terminal as well

as a line printer for output (device 6). Double precision arithmetic
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is employed. To decrease required memory storage, only the frequency
interval values and the full magnitude response are saved. The
section magnitude responses are printed out, but are not stored.

The program will produce approximately 21 pages of output.

Shown below are sample deck set-ups.

Data
Card Format Fxample
1 212 0504 (5 sectiors Chebychev banc-st o)
2 F10.6 0.002 (T = 0.002)
3 2F10.4 60 40 (mu = 60, i R 40 radians)
4 F5.3 0.10 (Ripple amplitude = 0.10)
5 2F10.4 0 0.1 (Start at w = 0. Steps of
0.1 radian. Will ;inish
just past w = 102 radian<.)
1 212 0401 (4 sections Butterworth band-v.:ss)
2 F10.6 0.002 (T = 0.002)
3 2F10.4 60 40 (wu = 60, w = 40 radians)
4 2F10.4 0 0.1 (Start at w = 0. Steps of

0.1 radian. Will finish
just past w = 102 radlans).

The following pages contain annotated examples of output data.




This is an example of the output for an 8th order Butterworth

hand-stop filter (0402) with T = 0.002, Wy

w, = 40 radians.

1

increment is 0.l radian.

= 60 radians, and

The starting frequency is 0 radian and the frequency

H4
0.14575E+01
0.14575E+01
0.14575E+01
0.14575E+01
0.14576E+01

WDU = 60.07210 WDL = 40.02135 WDM = 49.02902 WB = 20.05076
T = 0.20000E-02
THE ROOTS OF THE FILTER ARE GIVEN BELOW
REAI 1) = -8.52659476 IMAGINARY(1l) = -44.46786740
K. o 2) = =G.9-,88916 TAGINARY(2) = -52.140959"
PEAL(3) = -4.° (76557 (MAGINARY(3) = -59.0158887C
REAL %) = =3.12232691 IMAGINARY(4) = -40.49140500
THE  JEFFICYFNTS OF EACH DIGITAL FILTER SECOND ORDEX SECTION ARE
GIVEN BELOW
gOR = ] Ay = 0.10024038E+07 Al = -0.19951623L+07
A2 = 0,10024038E+07 K1 = 0,98175481E-06
B] = -0.19584863E+01 B, = 0.96653295E+00
FOR &+ = 2 Ay = 0.10024038E+07 Al = -0.19951923E+07
A, = 0.10024038E+07 Kl = 0.97769448E-06
Bl = -0.19498774E+01 B2 = 0.96090048E+00
FOR T = 3 AO = 0.10024038E+07 A1 = -0.19951923E+07
A2 = 0.10024038E+07 K1 = 0.98755180E-06
B = -0.19681836E+01 B2 = 0.98202353E+00
FOR = 4 Ay = 0.10024038E+07 Al = -0,19951923E+07
A, 0.10024038E+07 Kl = 0.99216788LE-06
~ - -~ <--r\1 ~ fy cad) ala = gAY
1 S TTTHEL 32 SRS ioe TE
W H H1 H2 H3
0.0C)0 0.10000E4+01 0.11726E+01 0.85284E+00 0.68611E+00
0.1000 0.10000E4+01 0.11726E+01 0.85284E+00 0.68611E+00
0.2000 0.10000E+01 0.11726E+01 0.85284E+00 0.68611E+00
0.3000 0.99999E+00 0.11726E+01 0.85283E+00 0.68610E+00
0.4000 0.10000E+01 0.11726E+01 0.85283E+00 0.68609E+00
0.5000 0.10000E+01 0.11726E+01 0.85282E+00 0.68609E+00

0.14576E+01
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WDU is the prewarped upper frequency.

WDL is the prewarped lower frequency.

WDM is the prewarped center frequency.

WB is the bandwidth, WDU - WDL.

T is the sampling interval.

The Real and Imaginary part of the roots of the filter are given next.
I is the ith stage. I varies from 1 to N.

¢
.

A A, are the Butterworth band-stop filter numerator coefficients.

0 A1 A2
K1 is the gain factor.

B., and B

1 , are the Butterworth band~stop filter denominator cocfficients.

W 1is the frequency

H 1is the overall magnitude of the digital transfer function

Hl is the magnitude of the digital transfer function (lst stage).
H2 is the magnitude of the digital transfer function (2nd stage).
H3 is the magnitude of the digital transfer function (3rd stage).

H4 is the magnitude of the digital transfer function (4th stage).

See Figure 4.




-172-

This is an example of the output for an 8th order Chebychev
band-pass filter (0403) with T = 0.002, w, = 60 radians, and
Wy = 40 radians. The starting frequency is O radian, the frequency

increment is 0.1 radian, and the ripple is 0.1.

WDU = 60.07210 WDL = 40.02135 WDM = 49.02902 WB = 20.05076
T = 0.20000E-02

A = 0.37642105 B = 1.06850027 K8 = 0.69553541 K2 = 0.28813942

A = 0.37642105 B = 1.06850027 K8 = 0.28810020 K2 = 0.99524620

THE ROOTS OF THE FILTER ARE GIVEN BELOW i
REAL(1) = -3.19528085 IMAGINARY (1) = -44.97792290

REAL(2) = -3.77772492 IMAGINARY (2) = -53.17662810

REAL(3) = -1.15829660 IMAGINARY(3) = -40.10115290

REAL(4) = -1.73001696 IMAGINARY (4) = -59.89456990

THE COEFFICIENTS OF EACH DIGITAL FILTER SECOND ORDER SECTION ARE
GIVEN BELOW

FOR I =1 Ao = 0.10000000E+01 Al = 0.00000000E+00
A2 = -0.10000000E+01 Kl = 0.10395603E-01
B1 = -0.19792607E+01 B2 = 0.98732565E+00

FOR I = 2 AO = 0.10000000E+01 A1 = 0.00000000E+00 1
A2 = -0.10000000E+01 Kl = 0.10375296E-01
Bl = -0.19737935E+01 BZ = 0.98504460E+00

FOR I =3 Ao = 0.10000000E+01 A1 = 0.00000000E+00
A2 = -0.10000000E+01 K1 = 0.19406846E-01
B1 = -0.19889723E+01 B2 = 0.99538493E+00

FOR I = 4 A0 = 0.10000000E+01 Al = 0.00000000E+00
A2 = -0.10000000E+01 Kl = 0.19346636E-01
Bl = -0.19788675E+01 32 = 0.99312838E+00

W H H1 H2 H3 H4

0.0000 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.1000 0.12493E-12 0.51560E-03 0.36886E-03 0.12106E-02 0.54265E-03
0.2000 0.19990E-11 0.10312F-02 0.73773E-03 0.24211E-02 0.10853E-02
0.3000 0.10121E-10 0.15468E-02 0.11066E-02 0.36318E-02 0.16280E-02
0.4000 0.31991E-10 0.20625E-02 0.14755E-02 0.48426E-02 0.21707E-02
(1.5000 0,78116E-10 0.25783E-02 0.18445E-02 0.60536E-02 0.27134E-02
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WDU is the prewarped upper frequency.
WDL is the prewarped lower frequency.
WDM is the prewarped center frequency.
WB is the bandwidth, WDU - WDL.

T is the sampling interval.
B, A = %((Ve_: + 1 + e-l)llN + (/é-z + 1+ €~l)—1/N)
K, = 2Acos(9)

2

K, = A cosz(e) + B2

sinz(e)
The Real and Imaginary part of the roots of the filter are given next.
I is the ith stage. I varies from 1 to N.

A, A, A, are the Chebychev band-pass filter numerator coefficients.

(0L

K1 is the gain factor.

Bl’ and B, are the Chebychev band-pass filter denominator coefficients.

2
W 1is the frequency.

H 1is the overall magnitude of the digital transfer function.

Hl is the magnitude of the digital transfer function (lst stage).
H2 is the magnitude of the digital transfer function (2nd stage).

H3 is the magnitude of the digital transfer function (3rd stage).

H4 is the magnitude of the digital transfer function (4th stage).

See Figure 5.
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Abstract

algorithms defined as digital filters is presented.

suggested and a numerical example is given.

The use of a parameter identification procedure to detect

faults in hardware used to implement a broad class of linear

Using the

filter coefficient estimates produced by the identifier a method

of measuring the acceptability of the filtering algorithm is
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INTRODUCTION

Today's integrated circuit technology has provided inexpensive digital
hardware that can be used for the direct implementation of the digital
signal processing algorithms utilized in a variety of communication and
control systems. In these applications, there is a need for new methods

of faiiure analysis. While it is desirable to know when a hardware failure
occurs, and to know where the failure is located, it is aisc important 1c
know what effect the failure has on algorithm performance. In many cases

a failure, such as losing the least significant bit in a register, will not
significantly degrade performance and there is no need to consider switching

to a redundant implementation.

Currently, most of the work on failure analysis is described under the heading
of fault detection. From an operational point of view, designers are concernec
with the development of fault tolerant computer systems. However, in both
cases the nardware is usually considered and little attention is given to

the interaction between the hardware and the algorithm to be implemented.

To provide more information about algorithm performance, the problem of
mathematically describing failure detection and diagnosis has recently been
aiven attention. Mehra and Peschon [1] suggested implementing a Kalman
Tiiter in parallel with an algorithm implementation and using the statistics
of the innovations process for detecting system failures. Davis [2] shows 4

a method for using a Kalman filter to estimate the time when a failure 1

occurs. He then recommends readjustment of the filter parameters to obtain
new state estimates after the occurence of the fault. Krischer [31, in an

appiications oriented approach, applied a parameter identification approacn
to estimate the state of a biological system as the system parameters siow .

vary.
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In this paper, a parameter identification procedure similar L0 thal résciie-
by Mendel and Fu 4] is used to detect faults in the implementation of a

broad class of algorithms defined as digital filters. Given a design, the
filter coefficients are used as initial conditions for the identifier operating
in parallel with the filter. The identifier output consists of an estimate

of the filter coefficients and an error signal. When a fault occurs, the
error signal and the coefficient estimates will change rapidly during the

next few sampling times, If the fault is very serious, such as complete
failure of the multiplier, the algorithm implementation no longer exists anc

& total failure has occured. If, however, the failure is not total so that
the effect is to modify the filter coefficients, the coefficient estimates
will converge to the new values. At this point, the effect of the coefficient
changes must be evaluated to determine if the algorithm characteristics are
still satisfactory. In this paper this is done by establishing bounds on

the steady-state magnitude and phase functions. If the change in the
coefficients allows these bounds to be satisfied, the filter operation is

considered to be acceptable.

Tre procedures described have several advantages. First, remote sensing on
an alaorithm implementation can be accomplished. Secondly, the identifier
can be used with any linear system that can be modeled by a difference

equation. Thirdly, a better assessment as to the need for switching in an

aiternate algorithm implementation is available.

st o s ey s
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THE DIGITAL FILTER MODEL

An nth order time invariant linear digital filter is represented by the

expression
N n
yinT1=Y a, x [(n-K)T] = 2. " b.y[(n-3)T] (1)
= G J
k=0 J=1
Where the coeffieient sequences {ak} and {bj} are chosen to achiev= Ta:

desired filter characteristics. Using a vector representation (i) can be

rewritten as

vInT1 = ab[nT] - bYy [(n-1)TI (2)
where ‘
at - lag a; - - apl, (3)

t _ i
b =1by by . .43, (4)
n
fx[aT]
_InT] x[(n-1)T] (5)
xI (n-m)T]
and
y[(n-1)T |
y[(n-1)T] = YE(HTZ)T% (6) x
[o7] ,
Letting
(7}

(&)
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and
x[nT]

E[HT] gl === (9)
y{(n-1)T]

{2) can be rewritten as

Z[nT] = EtfﬂT]_C_ = <_li[nT},£> (?(:’
Equation (10) now represents the model for the digital filter that is usec

in the identification algorithm.

THE IDENTIFICATION ALGORITHM
The identification procedure is a sequential gradient descent algorithm
utilizing a quadratic cost function. The model is depicted in the block
diagram of Fig. 1. Here, at time t=nT the actual digital filter output is
y[nT] and the current input is u[nT]. From (10) the filter model is now
expressed as
2[nT]=y “[nTICInT] ()
Where ¢[nT] is the approximation of the parameter vector c at time t=nT.
Jdefining tne error as
elnT]=y[nT]-z[nT] (12)
the quadradic error function is
ILETNTII=4Ly[nT]-2[nT11? (13)
To minimize J{é[nT]] a multidimensional form of Newton's method is used
giving the recursive expression
CL(n+1)TI=C[nT] -RCnT] grad [J(E[nTIII. (14)
where R{nT_ is an nxn matrix whose coefficients are yet to be specified.
From (13) the expression
grad JFE[nT]]=-e[nT]g[nT] (15}

is obtained. Substitution of (15) into (14) now yields the recursive
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expression
[ (n+1)T1=C[nTJ+R[nT]e[nTJu[nT] (16)
Mendel and Fu [7], show that for the choice
i
RINT)J=——— (17)

u“{nTJu[nT]

convergence in the mean for ﬁ[nT] as n» «» is obtained.

The addition of the measurement noise v[nT] and n[nT] as shown in Fig. 1
causes the parameter estimates using (16) and (17) to become biased. To

avoid this a new error function

e [nT1=%[y[nT] - [2LnTI+v[nT]1]1° (18)
is used to give
Cl(n#1)T] = [1+R[nTI8LnTIIE[nTI+R[nTJe[nT Lyl nT#n[nT]] (19)

A : ; - .
where 3[nT] is the nth estimate of the measurement noise covariance.

FILTER PERFORMANCE
Riven a diaital filter described by (1), the implementation of the filter
is usually done to minimize the effects of coefficient and rounding errors.
In practice this results in most filters being implemented as a cascade
or parallel connection of first and second order sections [5].
Riven a cascade or parallel connection, several options for utilizing
the identifier are possible. First, the identifier can treat the complete
structure as a single filter. However, for hiah order filters, the deter-
mination of the coefficient sensitivities with respect to any error criterion
is aenerally very difficuit. Secondly, the identifier can operate on
each first or second order section. This allows a performance evaluation
at the section level which can be interpreted in terms of overall performance.

because magnitude and phase are often used to specify a digital filter

desiqr, a change in the filter coefficients, due to a fault, will e
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evaluated to see if the specifications are still satisfied. Tihis tolicows
the coefficient design procedure described by Brubaker [6].
For a second order filter with the transfer function

1 -2

an+a1Z +aZZ
H(Z) = (20)
1+b7Z-1+b22-2

tne magnitude function is described by

T AL\.\

EH[jmJ‘ = Ble (21)
wrere
S s
Alw) = iao +a. “+a, +(gaoa]+2a1a2) coswT + 2aoa2 cos ZwT* (22)
and
8(0) = {1+ b,2 + b2 + 2b; (1 + b,) cosuT + 2b, cos 2 T\ ; (23)
w) = | 1 Ng 1 i 2 w

Using (21) a differential magnitude approximation can be written as

A«‘[jwl':%’-—l—L—)—'—a 'r;aiw | rag + HILIGE gaiw) pay + AHGw)| Ha.“’ pa, +
0 1 %9

3 1H(jw) | 3]H(jw)]
3b, aby + 3b, 4b, (24)

“ne partial derivatives in (24) are given in [6] and by evaluating these
Zer.vatives over a frequency range of interest a region ir parameter space
-a: ve eszablished where filter performance is satisfactory for a given

ARDwi]. A similar strategy can be implemented for the phase function.
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expression
[ (n+1)T]=CInT+R[nT]e[nTJu[nT] (16)
Mendel and Fu [7], show that for the choice
I
RINT]=———— (17)

u“[nT]u[nT]

convergence in the mean for €[nT] as n» = is obtained.

The additiorn of the measurement noise v[nT] and n[nT] as shown in Fig. 1
causes the parameter estimates using (16) and (17) to become biased. To

avoid this a new error function

e [nTI1=%[yInT] - [2[nT]+v[nT]]7° (18)
is used to give
Cl(n+1)T] = [1+R[nTIS[nTIICInTJ+R[nT Je[nTILu[nT]+n[nT]] (19)

N\ o y . >
where 9[nT] is the nth estimate of the measurement noise covariance.

FILTER PERFORMANCE
Riven a diaital filter described by (1), the implementation of the filter
is usually done to minimize the effects of coefficient and rounding errors.
In practice this results in most filters being implemented as a cascade
or parallel connection of first and second order sections [5].
Riven a cascade or parallel connection, several options for utilizing
the identifier are possible. First, the identifier can treat the complete
structure as a single filter, However, for hiah order filters, the deter-
mination of the coefficient sensitivities with respect to any error criterion
is aenerally very difficult. Secondly, the identifier can operate on
each first or second order section. This allows a performance evaluation
at the section level which can be interpreted in terms of overall performance.
because magnitude and phase are often used to specify a digital filter

desian, a change in the filter coefficients, due to a fault, will e
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EXAMPLE
To illustrate using identification for fault detection consider the first

order digital filter

a,z”! 0.827"
UTE = =g Wl (15
1-b,2 1-0.857 2

For alH[jw]| = 0.1, the acceptable region for the filter coefficients is
shown in Fig. 2. The identifier response to the filter is shown in Fig. 3
as b] changes from 0.85 to 0.4. Initially the identifier tracks the
correct coefficients. When b] changes the error signal changes rapidly
and converaes to zero. The coefficient estimates converge to the new
values and the b] coefficient of 0.4 does not allow satisfactory
oerformance throuah use of the region shown in Fig. 2. A redundant filter

would then be set into operation.
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Digital
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Block Diagram for the Gradient Identifier
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